Browsing by Subject "Membrane Glycoproteins"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes α7-containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons(2009) Hruska, M.; Keefe J.; Wert, D.; Tekinay, A.B.; Hulce J.J.; Ibañez-Tallon I.; Nishi, R.Vertebrate α-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss in the ciliary ganglion, but increases > 100-fold as the number of neurons begins to decline between E9 and E14. PSCA is highly expressed in chicken and mouse telencephalon and peripheral ganglia and correlates with expression of α7-containing nicotinic acetylcholine receptors (α7-nAChRs). Misexpressing PSCA before cell death in the ciliary ganglion blocks α7-nAChR activation by nicotine and rescues the choroid subpopulation from dying. Thus, PSCA, a molecule previously identified as a marker of prostate cancer, is a member of the Ly-6 neurotoxin-like family in the nervous system, and is likely to play a role as a modulator of α7 signaling-induced cell death during development. Copyright © 2009 Society for Neuroscience.Item Open Access A role for LYNX2 in anxiety-related behavior(2009) Tekinay, A.B.; Nong, Y.; Miwa J.M.; Lieberam I.; Ibanez-Tallon I.; Greengard P.; Heintz, N.Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.