Browsing by Subject "Mel-frequency cepstral coefficients"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Pulse doppler radar target recognition using a two-stage SVM procedure(IEEE, 2010-07-07) Eryildirim, A.; Onaran, I.It is possible to detect and classify moving and stationary targets using ground surveillance pulse-Doppler radars (PDRs). A two-stage support vector machine (SVM) based target classification scheme is described here. The first stage tries to estimate the most descriptive temporal segment of the radar echo signal and the target signal is classified using the selected temporal segment in the second stage. Mel-frequency cepstral coefficients of radar echo signals are used as feature vectors in both stages. The proposed system is compared with the covariance and Gaussian mixture model (GMM) based classifiers. The effects of the window duration and number of feature parameters over classification performance are also investigated. Experimental results are presented.Item Open Access Recognition of vessel acoustic signatures using non-linear teager energy based features(IEEE, 2016-10) Can, Gökmen; Akbaş, Cem Emre; Çetin, A. EnisThis paper proposes a vessel recognition and classification system based on vessel acoustic signatures. Teager Energy Operator (TEO) based Mel Frequency Cepstral Coefficients (MFCC) are used for the first time in Underwater Acoustic Signal Recognition (UASR) to identify platforms the acoustic noise they generate. TEO based MFCC (TEO-MFCC), being more robust in noisy conditions than conventional MFCC, provides a better estimation platform energy. Conventionally, acoustic noise is recognized by sonar oper-ators who listen to audio signals received by ship sonars. The aim of this work is to replace this conventional human-based recognition system with a TEO-MFCC features-based classification system. TEO is applied to short-time Fourier transform (STFT) of acoustic signal frames and Mel-scale filter bank is used to obtain Mel Teager-energy spectrum. The feature vector is constructed by discrete cosine transform (DCT) of logarithmic Mel Teager-energy spectrum. Obtained spectrum is transformed into cepstral coefficients that are labeled as TEO-MFCC. This analysis and implementation are carried out with datasets of 24 different noise recordings that belong to 10 separate classes of vessels. These datasets are partially provided by National Park Service (NPS). Artificial Neural Networks (ANN) are used as a classification method. Experimental results demonstrate that TEO-MFCC achieves 99.5% accuracy in classification of vessel noises. © 2016 IEEE.Item Open Access Time-scale wavelet scattering using hyperbolic tangent function for vessel sound classification(IEEE, 2017-08-09) Can, Gökmen; Akbaş, Cem Emre; Çetin, A. EnisWe introduce a time-frequency scattering method using hyperbolic tangent function for vessel sound classification. The sound data is wavelet transformed using a two channel filter-bank and filter-bank outputs are scattered using tanh function. A feature vector similar to mel-scale cepstrum is obtained after a wavelet packed transform-like structure approximating the mel-frequency scale. Feature vectors of vessel sounds are classified using a support vector machine (SVM). Experimental results are presented and the new feature extraction method produces better classification results than the ordinary Mel-Frequency Cepstral Coefficients (MFCC) vectors. © EURASIP 2017.