Browsing by Subject "Meats"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Antioxidant α-tocopherol/γ-cyclodextrin–inclusion complex encapsulated poly(lactic acid) electrospun nanofibrous web for food packaging(John Wiley and Sons Inc., 2017-01) Aytac, Z.; Keskin, N. O. S.; Tekinay, T.; Uyar, Tamerα-Tocopherol (α-TC) and α-TC/cyclodextrin (CD)–inclusion complex (IC) incorporated electrospun poly(lactic acid) (PLA) nanofibers (NF) were developed via electrospinning (PLA/α-TC–NF and PLA/α-TC/γ-CD–IC–NF). The release of α-TC into 95% ethanol (fatty food simulant) was much greater from PLA/α-TC/γ-CD–IC–NF than from PLA/α-TC–NF because of the solubility increase in α-TC; this was confirmed by a phase-solubility diagram. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging assay shows that PLA/α-TC–NF and PLA/α-TC/γ-CD–IC–NF had 97% antioxidant activities; this value was expected to be high enough to inhibit lipid oxidation. PLA/α-TC–NF and PLA/α-TC/γ-CD–IC–NF were tested directly on beef with the thiobarbituric acid reactive substance (TBARS) method, and the nanofibers displayed a lower TBARS content than the unpackaged meat sample. Thus, active packaging significantly enhanced the oxidative stability of the meat samples at 4 °C. In conclusion, PLA/α-TC/γ-CD–IC–NF was shown to be promising as an active food-packaging material for prolonging the shelf life of foods.Item Open Access P band in a rotating optical lattice(The American Physical Society, 2008) Umucalılar, R. O.; Oktel, M. Ö.We investigate the effects of rotation on the excited bands of a tight-binding lattice, focusing particularly on the first excited (p) band. Both the on-site energies and the hopping between lattice sites are modified by the effective magnetic field created by rotation, causing a nontrivial splitting and magnetic fine structure of the p band. We show that Peierls substitution can be modified to describe p band under rotation, and use this method to derive an effective Hamiltonian. We compare the spectrum of the effective Hamiltonian with a first-principles calculation of the magnetic band structure and find excellent agreement, confirming the validity of our approach. We also discuss the on-site interaction terms for bosons and argue that many-particle phenomena in a rotating p band can be investigated starting from this effective Hamiltonian.