Browsing by Subject "Mean Field Annealing"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Circuit partitioning using mean field annealing(Elsevier, 1995) Bultan, T.; Aykanat, CevdetMean field annealing (MFA) algorithm, proposed for solving combinatorial optimization problems, combines the characteristics of neural networks and simulated annealing. Previous works on MFA resulted with successful mapping of the algorithm to some classic optimization problems such as traveling salesperson problem, scheduling problem, knapsack problem and graph partitioning problem. In this paper, MFA is formulated for the circuit partitioning problem using the so called net-cut model. Hence, the deficiencies of using the graph representation for electrical circuits are avoided. An efficient implementation scheme, which decreases the complexity of the proposed algorithm by asymptotical factors is also developed. Comparative performance analysis of the proposed algorithm with two wellknown heuristics, simulated annealing and Kernighan-Lin, indicates that MFA is a successful alternative heuristic for the circuit partitioning problem. © 1995.Item Open Access A fast neural-network algorithm for VLSI cell placement(Pergamon Press, 1998) Aykanat, Cevdet; Bultan, T.; Haritaoğlu, İ.Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.Item Open Access Parallel mapping and circuit partitioning heuristics based on mean field annealing(1992) Bultan, TevfikMoan Field Annealinp; (MFA) aJgoritlim, receñí,ly proposc'd for solving com binatorial optimization problems, combines the characteristics of nenral networks and simulated annealing. In this thesis, MFA is formulated for tlie mapping i)roblcm and the circuit partitioning problem. EHicient implementation schemes, which decrease the complexity of the proposed algorithms by asymptotical factors, are also given. Perlormances of the proposed MFA algorithms are evaluated in comparison with two well-known heuristics: simulated annealing and Kernighan-Lin. Results of the experiments indicate that MFA can be used as an alternative heuristic for the mapping problem and the circuit partitioning problem. Inherent parallelism of the MFA is exploited by designing efficient parallel algorithms for the proposed MFA heuristics. Parallel MFA algorithms proposed for solving the circuit partitioning problem are implemented on an iPS(J/2’ hypercube multicompute.r. Experimental results show that the proposed heuristics can be efficiently parallelized, which is crucial for algorithms that solve such computationally hard problems.