BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Maximum likelihood estimation (MLE)"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enhancements to linear least squares localization through reference selection and ML estimation
    (IEEE, 2008-03-04) Güvenç, İsmail; Gezici, Sinan; Watanabe F.; Inamura, H.
    Linear least squares (LLS) estimation is a low complexity but sub-optimum method for estimating the location of a mobile terminal (MT) from some distance measurements. It requires selecting one of the fixed terminals (FTs) as a reference FT for obtaining a linear set of expressions. However, selection of the reference FT is commonly performed arbitrarily in the literature. In this paper, a method for selection of the reference FT is proposed, which improves the location accuracy compared to a fixed selection of the reference FT. Moreover, a covariancematrix based LLS estimator is proposed in line of sight (LOS) and non-LOS (NLOS) environments which further improves accuracy since the correlations between the observations are exploited. Simulation results prove the effectiveness of the proposed techniques. © 2008 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback