Browsing by Subject "Markov modulated Poisson process"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Analytical performance modeling of elastic optical links with aligned spectrum allocation(Elsevier BV North-Holland, 2015) Vaezi, K.; Akar, N.Abstract Elastic optical networking has recently been proposed for use in optical transport networks to cope with increasingly heterogeneous and dynamic demand patterns. In this paper, we study the blocking performance of a multi-class elastic optical link for which a demand needs to be allocated a contiguous subset of the entire spectrum. This problem is different than the well-known blocking problem in multi-class multi-server loss systems due to the contiguous allocation constraint. We first propose a non-work-conserving aligned spectrum allocation policy which is shown to outperform the conventional first fit-based work-conserving allocation policy without alignment. Subsequently, for blocking performance of an aligned elastic optical link with up to three different traffic classes, we propose a novel and systematic order reduction procedure for MMPPs (Markov Modulated Poisson Process) and use this procedure as the numerical engine to approximately obtain the blocking probabilities. The proposed numerical algorithm is validated under various system and traffic parameters and is shown to be effectively usable as an instrument to dimension elastic optical links.Item Open Access Dimensioning shared-per-node recirculating fiber delay line buffers in an optical packet switch(Elsevier, 2013) Akar, N.; Gunalay, Y.Optical buffering based on fiber delay lines (FDLs) has been proposed as a means for contention resolution in an optical packet switch. In this article, we propose a queuing model for feedback-type shared-per-node recirculating FDL optical buffers in asynchronous optical switching nodes. In this model, optical packets are allowed to recirculate over FDLs as long as the total number of recirculations is less than a pre-determined limit to meet signal loss requirements. Markov Modulated Poisson Process (MMPP)-based overflow traffic models and fixed-point iterations are employed to provide an approximate analysis procedure to obtain blocking probabilities as a function of various buffer parameters in the system when the packet arrival process at the optical switch is Poisson. The proposed algorithm is numerically efficient and accurate especially in a certain regime identified with relatively long and variably-sized FDLs, making it possible to dimension optical buffers in next-generation optical packet switching systems.Item Open Access Retrial queuing models of multi-wavelength FDL feedback optical buffers(Institute of Electrical and Electronics Engineers, 2011) Akar, N.; Sohraby, K.Optical buffers based on Fiber Delay Lines (FDL) have been proposed for contention resolution in optical packet/burst switching systems. In this article, we propose a retrial queuing model for FDL optical buffers in asynchronous optical switching nodes. In the considered system, the reservation model employed is of post-reservation type and optical packets are allowed to re-circulate over the FDLs in a probabilistic manner. We combine the MMPP-based overflow traffic models of the classical circuit switching literature and fixed-point iterations to devise an algorithmic procedure to accurately estimate blocking probabilities as a function of various buffer parameters in the system when packet arrivals are Poisson and packet lengths are exponentially distributed. The proposed algorithm is both accurate and fast, allowing one to use the procedure to dimension optical buffers in next-generation optical packet switching systems.