Browsing by Subject "Marker gene"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold(Royal Society of Chemistry, 2016) Tansik, G.; Kilic, E.; Beter, M.; Demiralp, B.; K.Sendur, G.; Can, N.; Ozkan, H.; Ergul, E.; Güler, Mustafa O.; Tekinay, A. B.Biomineralization of the extracellular matrix (ECM) plays a crucial role in bone formation. Functional and structural biomimetic native bone ECM components can therefore be used to change the fate of stem cells and induce bone regeneration and mineralization. Glycosaminoglycan (GAG) mimetic peptide nanofibers can interact with several growth factors. These nanostructures are capable of enhancing the osteogenic activity and mineral deposition of osteoblastic cells, which is indicative of their potential application in bone tissue regeneration. In this study, we investigated the potential of GAG-mimetic peptide nanofibers to promote the osteogenic differentiation of rat mesenchymal stem cells (rMSCs) in vitro and enhance the bone regeneration and biomineralization process in vivo in a rabbit tibial bone defect model. Alkaline phosphatase (ALP) activity and Alizarin red staining results suggested that osteogenic differentiation is enhanced when rMSCs are cultured on GAG-mimetic peptide nanofibers. Moreover, osteogenic marker genes were shown to be upregulated in the presence of the peptide nanofiber system. Histological and micro-computed tomography (Micro-CT) observations of regenerated bone defects in rabbit tibia bone also suggested that the injection of a GAG-mimetic nanofiber gel supports cortical bone deposition by enhancing the secretion of an inorganic mineral matrix. The volume of the repaired cortical bone was higher in GAG-PA gel injected animals. The overall results indicate that GAG-mimetic peptide nanofibers can be utilized effectively as a new bioactive platform for bone regeneration. © 2016 The Royal Society of Chemistry.Item Open Access Spatial organization of functional groups on bioactive supramolecular glycopeptide nanofibers for differentiation of mesenchymal stem cells (MSCs) to brown adipogenesis(American Chemical Society, 2016-12) Caliskan, O. S.; Sardan, Ekiz M.; Tekinay, A. B.; Güler, Mustafa O.Spatial organization of bioactive moieties in biological materials has significant impact on the function and efficiency of these systems. Here, we demonstrate the effect of spatial organization of functional groups including carboxylate, amine, and glucose functionalities by using self-assembled peptide amphiphile (PA) nanofibers as a bioactive scaffold. We show that presentation of bioactive groups on glycopeptide nanofibers affects mesenchymal stem cells (MSCs) in a distinct manner by means of adhesion, proliferation, and differentiation. Strikingly, when the glutamic acid is present in the glycopeptide backbone, the PA nanofibers specifically induced differentiation of MSCs into brown adipocytes in the absence of any differentiation medium as shown by lipid droplet accumulation and adipogenic gene marker expression analyses. This effect was not evident in the other glycopeptide nanofibers, which displayed the same functional groups but with different spatial organization. Brown adipocytes are attractive targets for obesity treatment and are found in trace amounts in adults, which also makes this specific glycopeptide nanofiber system an attractive tool to study molecular pathways of brown adipocyte formation.