Browsing by Subject "Manufactured Materials"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Experimental observation of cavity formation in composite metamaterials(Optical Society of American (OSA), 2008) Caglayan H.; Bulu I.; Loncar, M.; Özbay, EkmelIn this paper, we investigated one of the promising applications of left-handed metamaterials: composite metamaterial based cavities. Four different cavity structures operating in the microwave regime were constructed, and we observed cavity modes on the transmission spectrum with different quality factors. The effective permittivity and permeability of the CMM structure and cavity structure were calculated by use of a retrieval procedure. Subsequently, in taking full advantage of the effective medium theory, we modeled CMM based cavities as one dimensional Fabry-Perot resonators with a subwavelength cavity at the center. We calculated the transmission from the Fabry-Perot resonator model using the one-dimensional transfer matrix method, which is in good agreement with the measured result. Finally, we investigated the Fabry-Perot resonance phase condition for a CMM based cavity, in which the condition was satisfied at the cavity frequency. Therefore, our results show that it is possible to treat metamaterial based cavities as one-dimensional Fabry-Perot resonators with a subwavelength cavity. © 2008 Optical Society of America.Item Open Access Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture(Optical Society of American (OSA), 2009) Alici, K.B.; Bilotti F.; Vegni L.; Özbay, EkmelIn the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with ë/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency. © 2009 Optical Society of America.