BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Manganese dioxide"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of carbon nanomaterials and MXene addition on the performance of nitrogen doped MnO2 based supercapacitors
    (Elsevier Ltd, 2021-12-02) PeçeneK, H.; Yetiman, S.; Dokan, F. K.; Önses, Mustafa Serdar; Yılmaz, E.; Sahmetlioğlu, E.
    Nitrogen-doped composites have the potential to achieve well electrochemical performance by enabling convenient contact of the electrolyte ions for carbon-based materials. A good combination of metal oxide and carbonaceous material is a critical challenge in the development of composites. Herein, we demonstrate a highly capacitive and superior cycle performance of MnO2 based supercapacitor electrodes. The addition of different forms of carbon nanomaterials (carbon nanotube and graphene) and MXene is particularly studied. MnO2 based composite materials are capable of capacitance retention over 95%, with high specific capacitance compared to pure N-doped MnO2. The highest specific capacitance was achieved with MXene based MnO2 composite, which exhibits 457 Fg-1, at a current density of 1 A g−1 with extreme cycling efficiency (102.5%, after 1000 cycles). High conductivity and large surface area are stimulated by the propitious interaction between MnO2 and nanoscale materials, resulting in superior supercapacitor efficiency. This study highlights the possible potential of carbon-based MnO2 composite electrodes which could be useful for future energy storage applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The effects of stage house coupling on multipurpose auditorium acoustics
    (Elsevier, 2022-03-01) Peçenek, H.; Yetiman, S.; Kılıç Dokan, F.; Onses, M. Serdar; Yılmaz, E.; Sahmetlioglu, E.
    Nitrogen-doped composites have the potential to achieve well electrochemical performance by enabling convenient contact of the electrolyte ions for carbon-based materials. A good combination of metal oxide and carbonaceous material is a critical challenge in the development of composites. Herein, we demonstrate a highly capacitive and superior cycle performance of MnO2 based supercapacitor electrodes. The addition of different forms of carbon nanomaterials (carbon nanotube and graphene) and MXene is particularly studied. MnO2 based composite materials are capable of capacitance retention over 95%, with high specific capacitance compared to pure N-doped MnO2. The highest specific capacitance was achieved with MXene based MnO2 composite, which exhibits 457 Fg-1, at a current density of 1 A g−1 with extreme cycling efficiency (102.5%, after 1000 cycles). High conductivity and large surface area are stimulated by the propitious interaction between MnO2 and nanoscale materials, resulting in superior supercapacitor efficiency. This study highlights the possible potential of carbon-based MnO2 composite electrodes which could be useful for future energy storage applications.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback