Browsing by Subject "Magnetometers"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Activity recognition invariant to sensor orientation with wearable motion sensors(MDPI AG, 2017) Yurtman, A.; Barshan, B.Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.Item Open Access Analysis of electrical characteristics and magnetic field dependences of YBCO step edge and bicrystal grain boundary junctions for rf-SQUID applications(Institute of Physics, 2004) Fardmanesh, M.; Schubert, J.; Akram, R.; Bick, M.; Banzet, M.; Zander, W.; Zhang, Y.; Krause, H-J.The dc characteristics and magnetic field dependences of Y-Ba-Cu-O bicrystal grain boundary junctions (BGBJs) and step edge junctions (SEJs) were investigated for fabrication of rf-SQUIDs. Test junctions with up to 8 μm widths as well as the junctions of the two types of junction-based rf-SQUID were studied. The SEJs typically showed lower Jc and higher ρN as compared to the BGBJs, resulting in close IcRN products. All the BGBJs showed classical field dependent Ic following their junction width, resembling Fraunhofer patterns. The field sensitivity of the BGBJs' Uc led to low yield submicron BGBJ rf-SQUIDs partially impaired by the Earth's magnetic field. Two major behaviours of low and high field dependences of Ic were observed for the SEJs. Only the low field-sensitive SEJs resulted in micron size junction rf-SQUIDs not impaired by the Earth's magnetic field. The low field-sensitive SEJs led to low I/f noise magnetically stable rf-SQUIDs appropriate for applications in unshielded environments at 77 K.Item Open Access Effect of rf pumping frequency and rf input power on the flux to voltage transfer function of rf-SQUIDs(IEEE, 2007) Akram, Rizwan; Eker, Taylan; Bozbey, Ali; Fardmanesh, Mehdi; Schubert, J.; Banzet, M.We present the results on the correlation between the flux to voltage transfer function, Vspp, of the rf-SQUID and the rf-bias frequency as well as rf-bias power. Measurements were performed for different SQUID gradiometer samples chosen from the same batch or different batches. In order to have full control on the electronics parameters, an experimental rf-SQUID circuit was designed and implemented with an operation frequency of 600 MHz to 900 MHz. According to our findings, It has been observed that at any particular rf-bias power, Vspp vs. rf-bias frequency shows Sine-like behavior. We observed that the main lobe maxima exist close to the resonance frequency of the LC tank circuit and by changing only the power, amplitude of the main lobe and side lobes can be controlled. The Vspp vs. rf-bias power analysis shows that maximum of Vspp, strongly depends on the bias frequency. This can be correlated with the S11 parameter of LC tank circuit. We also observed that the devices from the same batch show main lobe maxima at different frequencies and/or power. Our SQUIDs with high working frequency gave their maxima at lower rf-bias powers leading to the need of having high frequency electronics with low bias power handling capabilities. It has also been observed that the SQUIDs from the same chip show similar characteristics regarding Vspp vs. frequency and power while the SQUIDs from different batches show completely different behavior for a fixed LC tank circuit configuration.Item Open Access Fizik tedavi egzersizlerinin giyilebilir hareket algılayıcıları işaretlerinden dinamik zaman bükmesiyle sezimi ve değerlendirilmesi(IEEE, 2014-04) Yurtman, Aras; Barshan, BillurGiyilebilir hareket algılayıcılarından kaydedilen sinyalleri işleyerek fizik tedavi egzersizlerini algılamak ve değerlendirmek için özerk bir sistem geliştirilmiştir. Bir fizik tedavi seansındaki bir ya da birden fazla egzersiz tipini algılamak için, temeli dinamik zaman bükmesi (DZB) benzeşmezlik ölçütüne dayanan bir algoritma geliştirilmiştir. Algoritma, egzersizlerin doğru ya da yanlış yapıldığını değerlendirmekte ve varsa hata türünü saptamaktadır. Algoritmanın başarımını degerlendirmek için, beş katılımcı tarafından yapılan sekiz egzersiz hareketinin üç yürütüm türü için birer şablon ve 10’ar sınama yürütümünden oluşan bir veri kümesi kaydedilmiştir. Dolayısıyla, eğitim ve sınama kümelerinde sırasıyla 120 ve 1,200 egzersiz yürütümü bulunmaktadır. Sınama kümesi, boş zaman dilimleri de içermektedir. Öne sürülen algoritma, sınama kümesindeki 1,200 yürütümün % 8.58’ini kaçırmakta ve boş zaman dilimlerinin % 4.91’ini yanlış sezim olarak değerlendirerek toplam 1,125 yürütüm algılamaktadır. Doğruluk, sadece egzersiz sınıflandırması ele alındığında ˘ % 93.46, hem egzersiz hem de yürütüm türü sınıflandırması içinse % 88.65’tir. Sistemin bilinmeyen egzersizlere karşı davranışını sınamak için, algoritma, her egzersiz için, o egzersizin şablonları dışarıda bırakılarak çalıştırılmış ve 1,200 egzersizin sadece 10’u yanlış sezilmiştir. Bu sonuç, sistemin bilinmeyen hareketlere karşı gürbüz olduğunu göstermektedir. Öne sürülen sistem, hem bir fizik tedavi seansının yoğunluğunu kestirmek, hem de hastaya ve fizik tedavi uzmanına geribildirim vermek amacıyla egzersiz hareketlerini değerlendirmek için kullanılabilir.Item Open Access Human activity recognition using inertial/magnetic sensor units(Springer, Berlin, Heidelberg, 2010) Altun, Kerem; Barshan, BillurThis paper provides a comparative study on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), the least-squares method (LSM), the k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). Daily and sports activities are classified using five sensor units worn by eight subjects on the chest, the arms, and the legs. Each sensor unit comprises a triaxial gyroscope, a triaxial accelerometer, and a triaxial magnetometer. Principal component analysis (PCA) and sequential forward feature selection (SFFS) methods are employed for feature reduction. For a small number of features, SFFS demonstrates better performance and should be preferable especially in real-time applications. The classifiers are validated using different cross-validation techniques. Among the different classifiers we have considered, BDM results in the highest correct classification rate with relatively small computational cost. © 2010 Springer-Verlag Berlin Heidelberg.Item Open Access Investigating inter-subject and inter-activity variations in activity recognition using wearable motion sensors(Oxford University Press, 2016) Barshan, B.; Yurtman, A.This work investigates inter-subject and inter-activity variability of a given activity dataset and provides some new definitions to quantify such variability. The definitions are sufficiently general and can be applied to a broad class of datasets that involve time sequences or features acquired using wearable sensors. The study is motivated by contradictory statements in the literature on the need for user-specific training in activity recognition. We employ our publicly available dataset that contains 19 daily and sports activities acquired from eight participants who wear five motion sensor units each. We pre-process recorded activity time sequences in three different ways and employ absolute, Euclidean and dynamic time warping distance measures to quantify the similarity of the recorded signal patterns. We define and calculate the average inter-subject and inter-activity distances with various methods based on the raw and pre-processed time-domain data as well as on the raw and pre-processed feature vectors. These definitions allow us to identify the subject who performs the activities in the most representative way and pinpoint the activities that show more variation among the subjects. We observe that the type of pre-processing used affects the results of the comparisons but that the different distance measures do not alter the comparison results as much. We check the consistency of our analysis and results by highlighting some of our activity recognition rates based on an exhaustive set of sensor unit, sensor type and subject combinations. We expect the results to be useful for dynamic sensor unit/type selection, for deciding whether to perform user-specific training and for designing more effective classifiers in activity recognition.Item Open Access Investigation of personal variations in activity recognition using miniature inertial sensors and magnetometers(IEEE, 2012-04) Yurtman, Aras; Barshan, BillurIn this paper, data acquired from five sensory units mounted on the human body, each containing a tri-axial accelerometer, gyroscope, and magnetometer, during 19 different human activities is used to calculate inter-subject and inter-activity variations using different methods and the results are summarized in various forms. Absolute, Euclidean, and dynamic time-warping distances are used to assess the similarity of the signals. The comparisons are made using the raw and normalized time-domain data, raw and normalized feature vectors. Firstly, inter-subject distances are averaged out per activity and per subject. Based on these values, the "best" subject is defined and identified according to his/her average distance to the others. Then, the averages and standard deviations of inter-activity distances are presented per subject, per unit, and per sensor. Moreover, the effects of removing the mean and the different distance measures on the results are discussed. © 2012 IEEE.Item Open Access Selection of the best proper DC-SQUIDs in a multi-SQUID configuration(IEEE, 2007) Avcı, İ.; Akram, R.; Bozbey, Ali; Tepe, M.; Abukay, D.We have carried out experimental investigation of multi-DC-SQUID magnetometer configuration fabricated on YBa2Cu30 7-δ thin films onto 24 degree SrTiO3 bicrystal substrates by directly coupling the pick-up loop to DC-SQUIDs. The layout of the magnetometer pick-up loop was chosen as a square washer configuration by maximizing loop effective area and minimizing loop inductance. We have used De-Magnetron Sputtering technique for deposition of the films and chemical etching process for patterning the Josephson junctions having 4 μm widths. The use of multi-SQUID configuration is related to the selection of the best proper junctions for SQUID to improve the chip sensitivity with selectivity option of choosing the squid junctions rather than multichannel operation. Selection of the best junctions compared to each other depending on the junction critical currents and noise levels caused by the fabrication process and placements of the junctions on the grain boundary enable having an increased output signal of the DC-SQUID.