Browsing by Subject "Magnetics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Algebraic reconstraction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density(Institute of Physics and Engineering in Medicine, 2004) Ider, Y. Z.; Onart, S.Magnetic resonance-electrical impedance tomography (MREIT) algorithms fall into two categories: those utilizing internal current density and those utilizing only one component of measured magnetic flux density. The latter group of algorithms have the advantage that the object does not have to be rotated in the magnetic resonance imaging (MRI) system. A new algorithm which uses only one component of measured magnetic flux density is developed. In this method, the imaging problem is formulated as the solution of a non-linear matrix equation which is solved iteratively to reconstruct resistivity. Numerical simulations are performed to test the algorithm both for noise-free and noisy cases. The uniqueness of the solution is monitored by looking at the singular value behavior of the matrix and it is shown that at least two current injection profiles are necessary. The method is also modified to handle region-of-interest reconstructions. In particular it is shown that, if the image of a certain xy-slice is sought for, then it suffices to measure the z-component of magnetic flux density up to a distance above and below that slice. The method is robust and has good convergence behavior for the simulation phantoms used.Item Open Access Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers(Optical Society of American (OSA), 2011) Ozbey, B.; Aktas O.Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed. © 2011 Optical Society of America.