BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Magnetic resonance elastography"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Frequency response analysis and reconstruction weighting schemes for MR elastography
    (2020-09) Arıyürek, Cemre
    Magnetic resonance elastography (MRE) non-invasively and quantitatively assesses the elasticity of the in-vivo tissue. In MRE, shear waves are induced to the tissue by an actuator, while phase-contrast images are obtained by magnetic resonance imaging (MRI). Finally, elasticity maps are generated using displacement information carried by phase-contrast images. The direction and frequency of the induced shear waves could be crucial in MRE. Here, it is demonstrated by the frequency response MRE simulations that modes of the shear waves can be observed in the brain during MR elastography with high shear wave displacement values at the mode frequencies. High shear wave displacements, 10-20 times of the applied displacement, were observed at mode frequencies in phantom MRE experiments. The second part of the thesis focuses on weighting schemes to combine multiple elasticity maps reconstructed from data collected for different excitation frequencies and motion direction. A new weighting scheme, which maximizes the signal-to-noise ratio (SNR) of the final wave speed map, has been proposed for tomoelastography and Helmholtz inversions. For both inversion techniques, considering the noise on the complex MRI signal, the SNR of the reconstructed wave speed map was formulated by an analytical approach assuming a high SNR. Thus, with the proposed SNR weighting method, while not altering the accuracy or spatial resolution of the wave speed map, the SNR of the wave speed map has been improved by 2 and 1.6 times for tomoelastography and Helmholtz inversion, respectively. The bias occurring for low SNR data cases was eliminated in tomoelastography and reduced in Helmholtz inversion with the proposed SNR-weighted reconstructions. Similarly, a strain-based weighting for MRE reconstruction has been introduced. Experimental results demonstrated that strain weights could prevent artifacts at the boundaries of encapsulated tumors or tissues with membranes; however, further examination is required. In this thesis, two independent contributions have been made to the field of magnetic resonance elastography. By showing the existence of modes of the shear waves in the body, new fronts are opened in the MRE actuation methods and safety. The improvements in the elasticity map inversions could lead to the routine use of MRE in clinical practice.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Heterogeneous multifrequency direct inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam
    (Elsevier B.V., 2018) Barnhill, E.; Davies, P. J.; Ariyurek, C.; Fehlner, A.; Braun, J.; Sack, I.
    A new viscoelastic wave inversion method for MRE, called Heterogeneous Multifrequency Direct Inversion (HMDI), was developed which accommodates heterogeneous elasticity within a direct inversion (DI) by incorporating first-order gradients and combining results from a narrow band of multiple frequencies. The method is compared with a Helmholtz-type DI, Multifrequency Dual Elasto-Visco inversion (MDEV), both on ground-truth Finite Element Method simulations at varied noise levels and a prospective in vivo brain cohort of 48 subjects ages 18-65. In simulated data, MDEV recovered background material within 5% and HMDI within 1% of prescribed up to SNR of 20 dB. In vivo HMDI and MDEV were then combined with segmentation from SPM to create a fully automated “brain palpation” exam for both whole brain (WB), and brain white matter (WM), measuring two parameters, the complex modulus magnitude |G*|, which measures tissue “stiffness” and the slope of |G*| values across frequencies, a measure of viscous dispersion. |G*| values for MDEV and HMDI were comparable to the literature (for a 3-frequency set centered at 50 Hz, WB means were 2.17 and 2.15 kPa respectively, and WM means were 2.47 and 2.49 kPa respectively). Both methods showed moderate correlation to age in both WB and WM, for both |G*| and |G*| slope, with Pearson's r ≥ 0.4 in the most sensitive frequency sets. In comparison to MDEV, HMDI showed better preservation of recovered target shapes, more noise-robustness, and stabler recovery values in regions with rapid property change, however summary statistics for both methods were quite similar. By eliminating homogeneity assumptions within a fast, fully automatic, regularization-free direct inversion, HMDI appears to be a worthwhile addition to the MRE image reconstruction repertoire. In addition to supporting the literature showing decrease in brain viscoelasticity with age, our work supports a wide range of inter-individual variation in brain MRE results.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback