Browsing by Subject "Long range interactions"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Quantum Dynamics of Long-Range Interacting Systems Using the Positive-P and Gauge-P Representations(American Physical Society, 2017) Wüster, S.; Corney, J. F.; Rost, J. M.; Deuar, P.We provide the necessary framework for carrying out stochastic positive-P and gauge-P simulations of bosonic systems with long-range interactions. In these approaches, the quantum evolution is sampled by trajectories in phase space, allowing calculation of correlations without truncation of the Hilbert space or other approximations to the quantum state. The main drawback is that the simulation time is limited by noise arising from interactions. We show that the long-range character of these interactions does not further increase the limitations of these methods, in contrast to the situation for alternatives such as the density matrix renormalization group. Furthermore, stochastic gauge techniques can also successfully extend simulation times in the long-range-interaction case, by making using of parameters that affect the noise properties of trajectories, without affecting physical observables. We derive essential results that significantly aid the use of these methods: estimates of the available simulation time, optimized stochastic gauges, a general form of the characteristic stochastic variance, and adaptations for very large systems. Testing the performance of particular drift and diffusion gauges for nonlocal interactions, we find that, for small to medium systems, drift gauges are beneficial, whereas for sufficiently large systems, it is optimal to use only a diffusion gauge. The methods are illustrated with direct numerical simulations of interaction quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg states in a Bose-Einstein condensate, also without the need for the typical frozen gas approximation. We demonstrate that gauges can indeed lengthen the useful simulation time.Item Open Access Vortex lattices in dipolar two-compenent Bose-Einstein condensates(American Physical Society, 2014-02-21) Ghazanfari, N.; Keles, A.; Oktel, M. O.We consider a rapidly rotating two-component Bose-Einstein condensate with short-range s-wave interactions as well as dipolar coupling. We calculate the phase diagram of vortex lattice structures as a function of the intercomponent s-wave interaction and the strength of the dipolar interaction. We find that the long-range interactions cause new vortex lattice structures to be stable and lead to a richer phase diagram. Our results reduce to the previously found lattice structures for short-range interactions and single-component dipolar gases in the corresponding limits.