BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Living sensors"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Genetic circuits combined with machine learning provides fast responding living sensors
    (Elsevier BV, 2021-04-15) Saltepe, Behide; Bozkurt, Eray Ulaş; Güngen, Murat Alp; Çiçek, A. Ercüment; Şeker, Urartu Özgür Şafak
    Whole cell biosensors (WCBs) have become prominent in many fields from environmental analysis to biomedical diagnostics thanks to advanced genetic circuit design principles. Despite increasing demand on cost effective and easy-to-use assessment methods, a considerable amount of WCBs retains certain drawbacks such as long response time, low precision and accuracy. Here, we utilized a neural network-based architecture to improve the features of WCBs and engineered a gold sensing WCB which has a long response time (18 h). Two Long-Short Term-Memory (LSTM)-based networks were integrated to assess both ON/OFF and concentration dependent states of the sensor output, respectively. We demonstrated that binary (ON/OFF) network was able to distinguish between ON/OFF states as early as 30 min with 78% accuracy and over 98% in 3 h. Furthermore, when analyzed in analog manner, we demonstrated that network can classify the raw fluorescence data into pre-defined analyte concentration groups with high precision (82%) in 3 h. This approach can be applied to a wide range of WCBs and improve rapidness, simplicity and accuracy which are the main challenges in synthetic biology enabled biosensing.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback