Browsing by Subject "Liquid metal"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Digital microfluidics for reconfigurable antennas(IEEE, 2014) Damgaci, Y.; Çağatay, Engin; Bıyıklı, Necmi; Cetiner, B. A.Usage of fluids (microfluidic or otherwise) in antennas provides a conceptually easy reconfiguration mechanism in the aspect of physical alteration. However, a requirement of pumps, valves, etc. for liquid transportation makes the antenna implementations rather impractical for the real-life scenarios. This work reports on the theoretical calculations and experiments conducted to evaluate the electrowetting on dielectric (EWOD) driven digital microfluidics as a reconfiguration mechanism for antennas and RF circuits. © 2014 European Association on Antennas and Propagation.Item Open Access Microwave resonators enhanced with 3D liquid-metal electrodes for microparticle sensing in microfluidic applications(Institute of Electrical and Electronics Engineers , 2023-11-22) Alataş, Yağmur Ceren; Tefek, Uzay; Sari, B.; Hanay, Mehmet SelimIn electrical sensing applications, achieving a uniform electric field at the sensing region is required to eliminate the compounding effect of particle location on the signal magnitude. To generate a uniform electric field in a microfluidic platform, 3D electrodes based on conductive electrolyte liquids have been developed before, where the ionic conductivity of the electrolyte was sufficient for impedance measurements at low frequencies (typically lower than 50 MHz). However, electrolyte liquids cannot be used as electrodes at microwave frequencies (>1 GHz) due to the low mobility of ions. Here, we used Galinstan, a room-temperature liquid metal, to microfabricate 3D liquid electrodes connected to a microwave resonator — and all integrated within a microfluidic system. By generating a highly uniform electric field, a mixture of 20 μm and 30 μm diameter polystyrene particles were measured and analyzed without any calibration for particle position. The results demonstrate the utility of liquid electrodes in enhancing the electrical characteristics of microwave resonant sensors.Item Open Access Reconfigurable nested ring-split ring transmitarray unit cell employing the element rotation method by microfluidics(Institute of Electrical and Electronics Engineers, 2015) Erdil, E.; Topalli, K.; Esmaeilzad, N. S.; Zorlu, O.; Kulah, H.; Aydin, C. O.A continuously tunable, circularly polarized X-band microfluidic transmitarray unit cell employing the element rotation method is designed and fabricated. The unit cell comprises a double layer nested ring-split ring structure realized as microfluidic channels embedded in Polydimethylsiloxane (PDMS) using soft lithography techniques. Conductive regions of the rings are formed by injecting a liquid metal (an alloy of Ga, In, and Sn), whereas the split region is air. Movement of the liquid metal together with the split around the ring provides 360° linear phase shift range in the transmitted field through the unit cell. A circularly polarized unit cell is designed to operate at 8.8 GHz, satisfying the necessary phase shifting conditions provided by the element rotation method. Unit cell prototypes are fabricated and the proposed concept is verified by the measurements using waveguide simulator method, within the frequency range of 8-10 GHz. The agreement between the simulation and measurement results is satisfactory, illustrating the viability of the approach to be used in reconfigurable antennas and antenna arrays.