Browsing by Subject "Liquid crystals"
Now showing 1 - 19 of 19
- Results Per Page
- Sort Options
Item Open Access 2D anisotropic photonic crystals of hollow semiconductor nanorod with liquid crystals(2013) Karaomerlioglu F.; Şimsek, Şevket; Mamedov, Amirullah M.; Özbay, EkmelPhotonic crystals (PCs) have many applications in order to control light-wave propagation. A novel type of two-dimensional anisotropic PC is investigated band gap and optical properties as a hollow semiconductor nanorod with nematicliquid crystals (LC). The PC structure composed of an anisotropic nematicLC in semiconductor square hollow nanorod is designed using the plane wave expansion (PWE) method and finite-difference time-domain (FDTD) method. It has been used 5CB (4-pentyl-4'-cyanobiphenyl) as LC core, and Tellurium (Te) as square hollow nanorod material.The PC with hollow Tenanorod with nematicLC is compared with the PC with solid Tenanorodand the PC with hollow Tenanorod. © (2013) Trans Tech Publications, Switzerland.Item Open Access 2D material liquid crystals for optoelectronics and photonics(Royal Society of Chemistry, 2017) Hogan, Ben T.; Kovalska, Evgeniya; Craciun, Monica F.; Baldycheva, AnnaThe merging of the materials science paradigms of liquid crystals and 2D materials promises superb new opportunities for the advancement of the fields of optoelectronics and photonics. In this review, we summarise the development of 2D material liquid crystals by two different methods: dispersion of 2D materials in a liquid crystalline host and the liquid crystal phase arising from dispersions of 2D material flakes in organic solvents. The properties of liquid crystal phases that make them attractive for optoelectronics and photonics applications are discussed. The processing of 2D materials to allow for the development of 2D material liquid crystals is also considered. An emphasis is placed on the applications of such materials; from the development of films, fibers and membranes to display applications, optoelectronic devices and quality control of synthetic processes. © 2017 The Royal Society of Chemistry.Item Open Access Contactless pulsed and continuous microdroplet release using photothermal liquid crystals(Wiley-VCH Verlag GmbH & Co. KGaA, 2022-10-24) Beyazkilic, P.; Akçimen, Samet; Elbüken, Çağlar; Ortaç, Bülent; Cai, S.; Bukusoglu, E.Targeted, on-demand delivery has been of interest using materials responsive to environmental stimuli. A delivery technique based on precise release of aqueous microdroplets from a liquid crystal (LC) medium with contactless stimulation is presented. A nematic LC is doped with a photothermal dye that produces heat under near IR light exposure. The heat is used to overcome the elastic strains in the LC phase, promoting the release of initially entrapped water droplets to the neighboring aqueous solution. Designing the geometry of LC-based emulsions and tuning the light intensity and position allows for manipulation of the release in two distinct modes defined as pulsated and continuous. In the pulsated mode, water droplets are released transiently from the casted water-in-LC emulsion layer based on sweeping by the moving isotropic-nematic phase boundary controlled by light. In the continuous mode, water droplets are ejected continuously from a droplet-shaped water-in-LC emulsion, due to a heating-induced internal flow controlled by light. The droplet release by contactless stimulation is used for the on-demand dosing of dopamine and its oxidizing reagent from isolated reservoirs to obtain an in situ reaction signal for a hydrogen peroxide assay. A new dual-mode release system developed with photothermal LCs holds potential in drug release, controlled mixing, and photothermal therapyItem Open Access The effect of anions of transition metal salts on the structure of modified mesostructured silica films and monoliths(Elsevier, 2007) Demirörs, A. F.; Arslan, M.; Dag, Ö.The structure of the preformed LC mesophase of water:transition metal salt ([M(H2O)6]X2):acid (HX):oligo(ethylene oxide) (or Pluronics):tetramethylorthosilicate (TMOS) mixture during hydrolysis and partial polymerization of the silica source is maintained upon further polymerization and condensation of the silica species in the solid state. The liquid mixture in early stage of the silica polymerization could be casted or dip coated to a surface of a glass or silicon wafer to produce mesostructured silica monoliths and films, respectively. The silica species and ions (metal ions and anions) influence the structure of the LC mesophases (as a result, the structure of silica) and the hydrophilic and hydrophobic balance in the reaction media. The silica structure can be changed from hexagonal to cubic by increasing, for example, the nitrate salt concentration in the nitrate salt systems. A similar transformation takes place in the presence of very low perchlorate salt concentration. The salt concentration in the mesostructured silica can be increased up to 1.1/1.0 salt/SiO2 w/w ratio, in mesostructured silica materials by maintaining its lamella structure in P123 and cubic in the CnEOm systems. However, the materials obtained from the P123 systems undergo transformation from lamella to 2D hexagonal upon calcinations. The method developed in this work can be used to modify the internal surface of the pores with various transition metal ions and metal oxides that may find application in catalysis. © 2006 Elsevier Inc. All rights reserved.Item Open Access Effect of Humidity on Liquid-Crystalline Myelin Figure Growth Using Digital Holographic Microscopy(Elsevier B.V., 2016) Mosaviani, R.; Moradi, A. R.; Tayebi, L.Dynamics of liquid-crystalline Myelin Figures (MFs) is a multifaceted issue depending on various elements, which have not been fully resolved yet. Our experimental results show that degree of humidity is influential on the initial growth and dynamics of MFs - a factor that was not been carefully considered on MF formations. In this paper, we present a systematic experimental study on the effect of humidity on MF dynamics. Quantitative analysis of MF dynamical behavior was performed using digital holographic microscopy (DHM). Our study reveals that humidifying the initial lipid reservoir has reverse effect on the rate of the growth to the extent that complete saturation of the lipid source prevents MF growth. The phenomenon is explained by the role of hydration gradient during MF formation.Item Open Access Effects of ions on the liquid crystalline mesophase of transition-metal salt: surfactant (CnEOm)(American Chemical Society, 2004) Dag, Ö.; Alayoǧlu, S.; Uysal, İ.The transition-metal aqua complex salts [M(H2O) x]Y2 (where M is some of the first- and second-row transitionmetal ions and Y is Cl-, NO3-, and ClO4- counteranions) form liquid crystalline (LC) mesophases with oligo(ethylene oxide) nonionic surfactants (CnH 2n+1(CH2CH2O)mOH, denoted as C nEOm). The structure of the [M(H2O) x]Y2:CnEOm mesophase is usually 2D hexagonal in nitrate systems, cubic in perchlorate systems, and absent in the chloride systems. The solubility of the metal aqua complex salt follows the Hofmeister series in a [M(H2O)x]Y2:C nEOm mesophase. However, the nitrate ion interacts with the metal center as a bidentate and/or unidentate ligand, therefore reducing the ion density (and/or ionic strength) of the LC medium and further enhancing the solubility of nitrate salt in the LC systems. The cobalt chloride salt is the only soluble chloride salt that undergoes ligand-exchange reactions in the [Co(H2O)6]Cl2:CnEOm system. In an LC mesophase, anions have a greater influence on the hydrophilicity of nonionic surfactants than do cations. The structure and stability of the LC mesophase can be controlled by controlling either the hydrophilicity of the nonionic surfactant (by choosing the right anion type) or the ion density of the medium (by either influencing the equilibrium between the free and coordinated anions or balancing between the coordinating and noncoordinating anions in the medium).Item Open Access Liquid crystalline mesophases of pluronics (L64, P65, and P123) and transition metal nitrate salts ([M(H2O)6](NO 3)2)(American Chemical Society, 2005) Demirörs, A. F.; Eser, B. E.; Dag, Ö.The triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers, Pluronics (L64, P65, and P123), form liquid crystalline (LC) mesophases with transition metal nitrate salts (TMS), [M(H2O) n] (NO3)2, in the presence and absence of free water in the media. In this assembly process, M-OH2 plays an important role as observed in a TMS:CnEOm (C nEOm is oligo(ethylene oxide) nonionic surfactants) system. The structure of the LC mesophases and interactions of the metal ion-nitrate ion and metal ion-Pluronic were investigated using microscopy (POM), diffraction (XRD), and spectroscopy (FTIR and micro-Raman) techniques. The TMS:L64 system requires a shear force for mesophase ordering to be observed using X-ray diffraction. However, TMS:P65 and TMS:P123 form well structured LC mesophases. Depending on the salt/Pluronic mole ratio, hexagonal LC mesophases are observed in the TMS:P65 systems and cubic and tetragonal LC mesophases in the TMS:P123 systems. The LC mesophase in the water/salt/Pluronic system is sensitive to the concentration of free (H2O) and coordinated water (M-OH2) molecules and demonstrates structural changes. As the free water is evaporated from the H2O:TMS:Pluronic LC mesophase (ternary mixture), the nitrate ion remains free in the media. However, complete evaporation of the free water molecules enforces the coordination of the nitrate ion to the metal ion in all TMS:Pluronic systems. © 2005 American Chemical Society.Item Open Access Lyotropic liquid crystal to soft mesocrystal transformation in hydrated salt-surfactant mixtures(Wiley, 2013) Albayrak, C.; Barım, G.; Dag, Ö.Hydrated CaCl2, LiI, and MgCl2 salts induce self-assembly in nonionic surfactants (such as C12H 25(OCH2CH2)10OH) to form lyotropic liquid-crystalline (LLC) mesophases that undergo a phase transition to a new type of soft mesocrystal (SMC) under ambient conditions. The SMC samples can be obtained by aging the LLC samples, which were prepared as thin films by spin-coating, dip-coating, or drop-casting of a clear homogenized solution of water, salt, and surfactant over a substrate surface. The LLC mesophase exists up to a salt/surfactant mole ratio of 8, 10, and 4 (corresponding to 59, 68, and 40wt % salt/surfactant) in the CaCl2, LiI, and MgCl2 mesophases, respectively. The SMC phase can transform back to a LLC mesophase at a higher relative humidity. The phase transformations have been monitored using powder X-ray diffraction (PXRD), polarized optical microscopy (POM), and FTIR techniques. The LLC mesophases only diffract at small angles, but the SMCs diffract at both small and wide angles. The broad surfactant features in the FTIR spectra of the LLC mesophases become sharp and well resolved upon SMC formation. The unit cell of the mesophases expands upon SMC transformation, in which the expansion is largest in the MgCl2 and smallest in the CaCl2 systems. The POM images of the SMCs display birefringent textures with well-defined edges, similar to crystals. However, the surface of the crystals is highly patterned, like buckling patterns, which indicates that these crystals are quite soft. This unusual phase behavior could be beneficial in designing new soft materials in the fields of phase-changing materials and mesostructured materials, and it demonstrates the richness of the phase behavior in the salt-surfactant mesophases.Item Open Access Lyotropic liquid crystalline mesophases of lithium dihydrogen phosphate and 10-lauryl ether stabilized with water or phosphoric acid(Wiley, 2023-01) Topuzlu, Ezgi Yılmaz; Ulgut, Burak; Dağ, ÖmerItem Open Access Lyotropic liquid-crystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesostructured cadmium sulfide(American Chemical Society, 2003) Dag, Ö.; Alayoǧlu, S.; Tura, C.; Çelik, Ö.Lyotropic liquid-crystalline (LLC), transition metal salt: oligo(ethylene oxide) nonionic surfactant (CnH2n+1(CH2CH2O)mOH, denoted as CnEOm), systems have been studied by means of diffraction, microscopy, and spectroscopy to elucidate the structural, thermal, and templating properties. In the system, the lyotropic salts of transition metal aqua complexes, such as chlorides and sulfates, are insoluble and do not form a LC phase in CnEOm-type nonionic surfactants. However, the transition metal aqua complexes of nitrates and perchlorates are soluble and form 2D and 3D hexagonal and cubic mesophases. These phases are stable in a very broad range of salt:surfactant mole ratios (1.0 and 3.6). The nitrate salts form a hexagonal mesophase. However, in high nitrate salt concentrations (above 3.2 salt:surfactant mole ratio), the salt crystals are either insoluble or the salt:surfactant mixtures are in a cubic mesophase. The structure and thermal properties of the new system are determined by the solubility of the transition metal salts, the concentration of the salt, and the surfactant type. The LC [Cd(H2O)4](NO3)2: C12EO10 mesophase has been reacted with H2S gas to produce solid mesostructured CdS (meso-CdS). The meso-CdS particles are spherical in morphology and are made up of hierarchical organization of 2-4-nm CdS particles. The salt:surfactant LLC systems and the solid meso-CdS have been investigated using polarized optical microscopy, X-ray diffraction, Fourier transform infrared, Fourier transform Raman, and UV-vis absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy.Item Open Access Method to enlarge the hologram viewing window using a mirror module(2009) Kang H.; Ohmura, N.; Yamaguchi, T.; Yoshikawa H.; Kim, S.-C.; Kim, E.-S.A liquid crystal panel for a video projector is often used for holographic television. However, its pixel size and pixel number are not enough for practical holographic 3-D display. Therefore, a multipanel configuration is generally used to increase the viewing window and displayed image size, and many spatial light modulators should be used in them. We propose a novel method to increase the viewing window of a holographic display system. The proposed method, which is implemented by using a mirror module and 4-f lens set, is to reconfigure the beam shape reflected by a spatial light modulator. The equipment is applied to a holographic display system, which has only a single spatial light modulator; a hologram could be displayed in a wider viewing window by the equipment than that of the conventional method. By the proposed method, the resolution of the reconfigured spatial light modulator has double resolution in the horizontal direction. Inversely, the vertical resolution is decreased. Even if the vertical resolution is decreased, a viewer could get 3-D effect because humans get more 3-D information in the horizontal direction. We have experimented using a liquid crystal on silicon (LcOS), whose resolution is 4096×2160pixels. The reconfigured resolution by the mirror module is 8192×1080pixels. From the experiments, the horizontal viewing window is almost two times wider than that without the mirror module. As a result, the hologram can be observed binocularly. © 2009 Society of Photo-Optical Instrumentation Engineers.Item Open Access A new lyotropic liquid crystalline system: oligo(ethylene oxide) surfactants with [M(H2O)n]Xm transition metal complexes(Wiley, 2001) Çelik, Ö.; Dag, Ö.Coordinated water molecules induce the aggregation and self-assembly of the lyotropic liquid crystalline phase formed from non-ionic surfactants CnH2n+1(CH2CH2O)mOH and transition metal aqua complexes ([Ni(H2O)6](NO3)2, [Co(H2O)6](NO3)2, [Cd(H2O)4](NO3)2, and [Co(H2O)6]Cl2) into hexagonal (see schematic representation) and/or cubic structures. While the NiII and CoII complexes undergo recrystallization and phase separation at high complex concentrations, the ZnII and CdII complexes form cubic phases above metal/surfactant molar ratios of 3.2/1 at room temperature.Item Open Access Organization of bridging organics in periodic mesoporous organosilicas (PMOs)-polarization micro-raman spectroscopy(Wiley, 2001) Dag, Ö.; Ozin, G. A.The organization of bridging organics in oriented periodic mesoporous organosilica film (OPMOF) was demonstrated using the polarization micro-Raman spectroscopy (PMRS) in conjunction with powder x-ray diffraction (PXRD) and polarization optical microscopy (POM). The synthesis and the structural characterization of hexagonal symmetry OPMOF containing bridge-bonded ethane, ethene inside the silica channel walls were described. The mesoscale channels were found to run parallel to the surface of the underlying glass substrates as demonstrated by the PXRD measurements. A hexagonal array of channels with glassy silica organosilica walls was the best description of the structure shown by the PMRS measurements of OPMOF.Item Open Access Phase separation in liquid crystalline mesophases of [Co(H 2O)6]X2: P65 Systems (X = NO3-, Cl-, or ClO4-)(2007) Albayrak, C.; Gülten, G.; Dag, Ö.Transition-metal aqua complex salts [M(H2O)6]X 2 (where M is Mn(II), Co(II), Ni(II), Zn(II), or Cd(II) and X is NO3-, Cl-, or ClO4-) can be dissolved in triblock poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) copolymers (Pluronics, such as P65) to form homogeneous liquid crystalline (LC) mesophases. However, the [Co-(H2O) 6]X2:P65 LC mesophases slowly undergo phase separation into a disordered ion-free phase and an ordered ion-rich LC mesophase. The phase separation also takes place in the two-salt systems [Co(H2O) 6](NO3):[Co(H2O)6]-(ClO 4)2:P65 in which the ion-free disordered domains separate out from the initially ordered homogeneous mesophase. The phase separation results in a physical mixture of a hexagonal nitrate-rich and cubic perchlorate-rich LC and disordered ion-free domains in the mixed salt systems. The driving force in the phase separation in the [Co(H2O) 6]-X2:P65 system is Co(II)-catalyzed aerobic oxidation of P65 into ester and/or other oxidation products. The separation of ions in the [Co(H2O)6](NO3)2:[Co(H 2O)6](ClO4)2:P65 system is related to the mesostructures of the two-salt systems that are different, hexagonal in the [Co(H2O)6](NO3)2:P65 system and cubic in the [Co(H2O)6](ClO4)2:P65 system. There is no visible phase separation in the other transition-metal salt:P65 systems. The phase separation in the [Co-(H2O) 6]X2:P65 systems can also be eliminated by keeping the mesophase under a N2 atmosphere. © 2007 American Chemical Society.Item Open Access Polar Policryps diffractive structures generate cylindrical vector beams(American Institute of Physics Inc., 2015) Alj, D.; Paladugu, S.; Volpe, G.; Caputo, R.; Umeton, C.Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.Item Open Access Salt-acid-surfactant lyotropic liquid crystalline mesophases: synthesis of highly transparent mesoporous calcium hydroxyapatite thin films(Wiley-VCH Verlag, 2016) Tunkara, E.; Dag, Ö.Even though calcium hydroxyapatite [Ca10(PO4)6(OH)2, HAp] is one of the most investigated materials in the literature, the synthesis of mesoporous transparent thin film of HAp has not yet been reported. We show herein that mixtures of phosphoric acid (H3PO4·H2O, PA), calcium nitrate tetrahydrate [Ca(NO3)2·4H2O, CaN] and non‐ionic surfactant [C12H25(OCH2CH2)10OH, C12E10] can self‐assemble into stable lyotropic liquid crystalline (LLC) mesophases. The clear aqueous solutions of the mixtures can be spin‐coated over any substrate and then calcined to form highly transparent mesoporous HAp (mHAp) thin films. From among the compositions studied, three molar ratios of CaN/PA/C12E10 [3.3:2:1 (low), 5.8:3.5:1 (intermediate) and 8.4:5:1 (high)] were chosen for large‐scale preparation to investigate their structural and thermal properties. The mHAp films form at around 300 °C and fully crystalize at 500 °C, retaining their transparency, uniformity and porosity in all compositions with few differences. The surface area and pore volume decrease, and the pore size and pore size distribution increase with increasing annealing temperature for all compositions.Item Open Access Swollen liquid crystals (SLCs): A versatile template for the synthesis of nano structured materials(Royal Society of Chemistry, 2017) Dutt, S.; Siril, P. F.; Remita, S.Liquid crystal (LCs) is the state of matter that exhibits properties between a conventional liquid and solid crystals. Liquid crystals mainly can be classified into two types: thermotropic and lyotropic liquid crystals. A thermotropic liquid crystal shows properties that are dependent on temperature conditions. On the other hand in lyotropic liquid crystals (LLCs), the amphiphiles are dissolved in a solvent and exhibit liquid crystalline properties in certain concentration ranges. In the literature, lot of reviews have been presented on thermotropic and lyotropic liquid crystals (LLCs). But nowadays, swollen liquid crystals (SLCs) have become a much more important area of research because of their easily tunable properties, their stability and versatility of the system. Swollen liquid crystals (SLCs) consist of infinite liquid crystalline non polar cylinders organized on a hexagonal lattice in a polar medium and are prepared with the proper ratios of salted water and non polar solvents with cationic or anionic or non ionic surfactants and co surfactants i.e. water:oil:surfactant:cosurfactant. In this review article, we will briefly discuss the synthesis of swollen liquid crystals (SLCs), factors affecting their stability, different kinds of nanomaterials such as metallic, bimetallic, polymeric nanostructures synthesized inside swollen liquid crystals (SLCs) using different methods and the effect of swollen liquid crystal (SLC) confinement on the final morphology of nanomaterials with their potential applications.Item Open Access Synthesis of solid solutions of Cd1-xZnxS nanocrystals in the channels of mesostructured silica films(Royal Society of Chemistry, 2006) Akdoğan, Y.; Üzüm, Ç.; Dag, O.; Coombs, N.In this contribution, we introduce the use of metal ion (Cd(ii) and Zn(ii)) modified mesostructured silica as a reaction medium, to produce a solid solution of Cd1-xZnxS nanocrystals as a thin film. With this approach, a true liquid crystalline templating (TLCT) and liquid crystalline mesophase of transition metal salt oligo(ethylene oxide) non-ionic surfactant (((1 - x)[Cd(H2O)4](NO3)2 + x[Zn(H2O)6](NO3)2) CH 3(CH2)11(OCH2CH2) 10OH, (MLC)), systems were collectively used to synthesise mesostructured silica films. The film samples were reacted at room temperature (RT) in an H2S atmosphere to produce zinc blend Cd 1-xZnxS nanocrystals in the channels of mesostructured silica. The initial Zn(ii) and Cd(ii) ion concentrations in the reaction media determine the final composition and band gap of the Cd1-xZn xS nanocrystals. The growth process of the Cd1-xZn xS nanocrystals in the pores is influenced by the silica walls. If the walls are rigid (well polymerized, obtained by aging the samples before H2S treatment), then the Cd1-xZnxS nanoparticles are smaller in size and more uniform in size distribution. © The Royal Society of Chemistry 2006.Item Open Access Wave propagation and acoustic band gaps of two-dimensional liquid crystal/solid phononic crystals(Springer Verlag, 2017) Oltulu, O.; Mamedov, A. M.; Özbay, EkmelThe vast majority of acoustic wave propagation in phononic band studies has been usually carried out by scattering inclusions embedded in a viscoelastic medium, such as air or water. In this study, we present calculated band structure results for the two-dimensional square array geometry of a solid cylindrical scatterer surrounded by a liquid crystal (LC) matrix. Liquid crystals provide a unique combination of liquid-like and crystal-like properties as well as anisotropic properties. The purpose of using LC material is to take advantage of longitudinal acoustic waves propagating parallel (