Browsing by Subject "Linear discriminant analysis"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Comparative analysis of different approaches to target differentiation and localization with sonar(Elsevier, 2003) Barshan, B.; Ayrulu, B.This study compares the performances of different methods for the differentiation and localization of commonly encountered features in indoor environments. Differentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target tracking. Different representations of amplitude and time-of-2ight measurement patterns experimentally acquired from a real sonar system are processed. The approaches compared in this study include the target differentiation algorithm, Dempster-Shafer evidential reasoning, different kinds of voting schemes, statistical pattern recognition techniques (k-nearest neighbor classifier, kernel estimator, parameterized density estimator, linear discriminant analysis, and fuzzy c-means clustering algorithm), and artificial neural networks. The neural networks are trained with different input signal representations obtained usingpre-processing techniques such as discrete ordinary and fractional Fourier, Hartley and wavelet transforms, and Kohonen's self-organizing feature map. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.Item Open Access İki durumlu bir beyin bilgisayar arayüzünde özellik çıkarımı ve sınıflandırma(IEEE, 2017-10) Altındiş, Fatih; Yılmaz, B.Beyin bilgisayar arayüzü (BBA) teknolojisi motor nöronlarının özelliğini kaybeden ve hareket kabiliyeti kısıtlanmış ALS ve felçli hastalar gibi birçok kişinin dış dünya ile iletişimini sağlamaya yönelik kullanılmaktadır. Bu çalışmada, Avusturya’daki Graz Üniversitesi’nde alınmış EEG veri seti kullanılarak gerçek zamanlı EEG işleme simülasyonu ile motor hayal etme sınıflandırılması amaçlanmıştır. Bu veri setinde sağ el ya da sol elin hareket ettirilme hayali esnasında 8 kişiden alınmış iki kanallı EEG sinyalleri bulunmaktadır. Her katılımcıdan 60 sağ ve 60 sol olmak üzere toplamda 120 adet yaklaşık 9 saniyelik motor hayal etme deneme sinyali kayıt edilmiştir. Bu sinyaller filtrelemeye tabi tutulmuştur. Yirmi dört, 32 ve 40 elemanlı özellik vektörü bant geçiren filtreler kullanarak elde edilen göreceli güç değişim değerleridir (GGDD). Bu çalışmada, lineer diskriminant analizi (LDA), k en yakın komşular (KNN) ve destek vektör makinaları (SVM) ile sınıflandırma yapılmış, en iyi sınıflandırma performansının 24 değerli özellik vektörüyle ve LDA sınıflandırma yöntemiyle elde edildiği gösterilmiştir.Item Open Access A signal representation approach for discrimination between full and empty hazelnuts(IEEE, 2007) Onaran, İbrahim; İnce, N. F.; Tevfik, A. H.; Çetin, A. EnisWe apply a sparse signal representation approach to impact acoustic signals to discriminate between empty and full hazelnuts. The impact acoustic signals are recorded by dropping the hazelnut shells on a metal plate. The impact signal is then approximated within a given error limit by choosing codevectors from a special dictionary. This dictionary was generated from sub-dictionaries that are individually generated for the impact signals corresponding to empty and full hazelnut. The number of codevectors selected from each sub-dictionary and the approximation error within initial codevectors are used as classification features and fed to a Linear Discriminant Analysis (LDA). We also compare this algorithm with a baseline approach. This baseline approach uses features which describe the time and frequency characteristics of the given signal that were previously used for empty and full hazelnut separation. Classification accuracies of 98.3% and 96.8% were achieved by the proposed approach and base algorithm respectively. The results we obtained show that sparse signal representation strategy can be used as an alternative classification method for undeveloped hazelnut separation with higher accuracies.