Browsing by Subject "Line spectral frequencies"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Detection of empty hazelnuts from fully developed nuts by impact acoustics(IEEE, 2005) Onaran, İbrahim; Dülek, Berkan; Pearson, T. C.; Yardımcı, Y.; Çetin, A. EnisShell-kernel weight ratio is the main determinate of quality and price of hazelnuts. Empty hazelnuts and nuts containing undeveloped kernels may also contain mycotoxin producing molds, which can cause cancer. A prototype system was set up to detect empty hazelnuts by dropping them onto a steel plate and processing the acoustic signal generated when kernels impact the plate. The acoustic signal was processed by five different methods: 1) modeling of the signal in the time domain, 2) computing time domain signal variances in short time windows, 3) analysis of the frequency spectra magnitudes, 4) maximum amplitude values in short time windows, and 5) line spectral frequencies (LSFs). Support Vector Machines (SVMs) were used to select a subset of features and perform classification. 98% of fully developed kernels and 97% of empty kernels were correctly classified.Item Open Access Separating nut-shell pieces from hazelnuts and pistachio kernels using impact vibration analysis(IEEE, 2013) Habiboǧlu, Yusuf Hakan; Sevimli, Rasim Akın; Çetin, A. Enis; Pearson, T.C.In this article nut-shell pieces are separated from pistachio kernels and hazelnut kernels using impact vibration analysis. Vibration signals are recorded and analyzed in real-time. Mel-kepstral feature parameters and line spectral frequency values are extracted from the vibration signals. Feature parameters are classified using a Support Vector Machine (SVM) which was trained a priori using a manually classified data set. An average classification rate of 96:3% and 98:3%was achieved with Antepstyle Turkish pistachio nuts and hazelnuts. An important feature of the method is that it is easily trainable for other kinds of pistachio nuts and other nuts including walnuts. © 2013 IEEE.Item Open Access Source and filter estimation for Throat-Microphone speech enhancement(Institute of Electrical and Electronics Engineers Inc., 2016) Turan, M. A. T.; Erzin, E.In this paper, we propose a new statistical enhancement system for throat microphone recordings through source and filter separation. Throat microphones (TM) are skin-attached piezoelectric sensors that can capture speech sound signals in the form of tissue vibrations. Due to their limited bandwidth, TM recorded speech suffers from intelligibility and naturalness. In this paper, we investigate learning phone-dependent Gaussian mixture model (GMM)-based statistical mappings using parallel recordings of acoustic microphone (AM) and TM for enhancement of the spectral envelope and excitation signals of the TM speech. The proposed mappings address the phone-dependent variability of tissue conduction with TM recordings. While the spectral envelope mapping estimates the line spectral frequency (LSF) representation of AM from TM recordings, the excitation mapping is constructed based on the spectral energy difference (SED) of AM and TM excitation signals. The excitation enhancement is modeled as an estimation of the SED features from the TM signal. The proposed enhancement system is evaluated using both objective and subjective tests. Objective evaluations are performed with the log-spectral distortion (LSD), the wideband perceptual evaluation of speech quality (PESQ) and mean-squared error (MSE) metrics. Subjective evaluations are performed with an A/B comparison test. Experimental results indicate that the proposed phone-dependent mappings exhibit enhancements over phone-independent mappings. Furthermore enhancement of the TM excitation through statistical mappings of the SED features introduces significant objective and subjective performance improvements to the enhancement of TM recordings. ©2015 IEEE.Item Open Access System for removing shell pieces hazelnut kernels using impact vibration analysis(Elsevier BV, 2014-02) Çetin, A. Enis; Pearson, T. C.; Sevimli, R. A.A system for removing shell pieces from hazelnut kernels using impact vibration analysis was developed in which nuts are dropped onto a steel plate and the vibration signals are captured and analyzed. The mel-cepstral feature parameters, line spectral frequency values, and Fourier-domain Lebesgue features were extracted from the vibration signals. The best experimental results were obtained using the melcepstral feature parameters. The feature parameters were classified using a support vector machine (SVM), which was trained a priori using a manually classified dataset. An average recognition rate of 98.2% was achieved. An important feature of the method is that it is easily trainable, enabling it to be applicable to other nuts, including walnuts and pistachio nuts. In addition, the system can be implemented in real time. 2013 Elsevier B.V. All rights reserved