Browsing by Subject "Light-emitting diodes"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access Advances in the LED Materials and Architectures fro Energy-Saving Solid State Lighting towards Lighting Revolution(IEEE, 2012) Tan S.T.; Sun, X. W.; Demir, Hilmi Volkan; DenBaars, S. P.In this paper, we review the recent developments (in years 2010–2011) of energysaving solid-state lighting. The industry of white light-emitting diodes (LEDs) has made significant progress, and today, white LED market is increasing (mostly with increasing LED screen and LED TV sales). The so-called Blighting revolution[ has not yet really happened on a wide scale because of the lighting efficiency at a given ownership cost. Nevertheless, the rapid development of the white LEDs is expected to soon trigger and expand the revolution.Item Open Access Artificial intelligence models for validating and predicting the impact of chemical priming of hydrogen peroxide (H2O2) and light emitting diodes on in vitro grown industrial hemp (Cannabis sativa L.)(Springer Dordrecht, 2024-03-25) Aasim, Muhammad; Yildirim, Busra; Say, Ahmet; Ali, Seyid Amjad; Aytac, Selim; Nadeem, Muhammad AzharIndustrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 x Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 x 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.Item Open Access Blue-emitting CdSe nanoplatelets enabled by sulfur-alloyed heterostructures for light-emitting diodes with low turn-on voltage(American Chemical Society, 2021-12-28) İzmir, M.; Sharma, A.; Shendre, S.; Durmuşoğlu, E. G.; Sharma, V. K.; Shabani, Farzan; Baruj, Hamed Dehghanpour; Delikanlı, Savaş; Sharma, M.; Demir, Hilmi VolkanColloidal nanoplatelets (NPLs) have emerged as the last class of semiconductor nanocrystals for their potential optoelectronic applications. The heterostructures of these nanocrystals can achieve high photoluminescence quantum yield and enhanced photostability, along with color purity. Such advantages make them a promising candidate for solution-processable light-emitting diodes (LEDs). However, to date, blue-emitting CdSe nanoplatelets (NPLs) exhibit poor photoluminescence quantum yield and also typically suffer from a rolled-up morphology. To mitigate these problems in this work, we propose and demonstrate efficient alloyed 4 ML CdSe1–xSx nanoplatelets having a CdS crown with enhanced photoluminescence quantum yields (up to 60%) in the blue region (462–487 nm). We successfully used these NPLs as an electrically driven active emitter in the blue-emitting NPL-LEDs with a low turn-on voltage of ∼4 V. The Commission Internationale de L’Eclairage (CIE) coordinates of (0.23, 0.14) were obtained for these blue-emitting NPL-LEDs. These emitters could potentially open up the opportunity for full-color displays using these NPL-based blue LEDs in conjunction with the red and green ones.Item Open Access Decoupling contact and mirror: an effective way to improve the reflector for flip-chip InGaN/GaN-based light-emitting diodes(Institute of Physics Publishing, 2016) Zhu B.; Liu W.; Lu S.; Zhang, Y.; Hasanov N.; Zhang X.; Ji Y.; Zhang Z.-H.; Tan S.T.; Liu, H.; Demir, Hilmi VolkanIn the conventional fabrication process of the widely-adopted Ni/Ag/Ti/Au reflector for InGaN/GaN-based flip-chip light-emitting diodes (LEDs), the contact and the mirror are entangled together with contrary processing conditions which set constraints to the device performance severely. Here we first report the concept and its effectiveness of decoupling the contact formation and the mirror construction. The ohmic contact is first formed by depositing and annealing an extremely thin layer of Ni/Ag on top of p-GaN. The mirror construction is then carried out by depositing thick layer of Ag/Ti/Au without any annealing. Compared with the conventional fabrication method of the reflector, by which the whole stack of Ni/Ag/Ti/Au is deposited and annealed together, the optical output power is improved by more than 70% at 350 mA without compromising the electrical performance. The mechanism of decoupling the contact and the mirror is analyzed with the assistance of contactless sheet resistance measurement and secondary ion mass spectrometry (SIMS) depth profile analysis. © 2016 IOP Publishing Ltd.Item Open Access Deep-red-emitting colloidal quantum well light-emitting diodes enabled through a complex design of core/crown/double shell heterostructure(Wiley, 2022-02-24) Shabani, Farzan; Dehghanpour Baruj, Hamed; Yurdakul, Iklim; Delikanlı, Savaş; Gheshlaghi, Negar; Işık, Furkan; Liu, B.; Altıntaş, Yemliha; Canımkurbey, Betül; Demir, Hilmi VolkanExtending the emission peak wavelength of quasi-2D colloidal quantum wells has been an important quest to fully exploit the potential of these materials, which has not been possible due to the complications arising from the partial dissolution and recrystallization during growth to date. Here, the synthetic pathway of (CdSe/CdS)@(1-4 CdS/CdZnS) (core/crown)@(colloidal atomic layer deposition shell/hot injection shell) hetero-nanoplatelets (NPLs) using multiple techniques, which together enable highly efficient emission beyond 700 nm in the deep-red region, is proposed and demonstrated. Given the challenges of using conventional hot injection procedure, a method that allows to obtain sufficiently thick and passivated NPLs as the seeds is developed. Consequently, through the final hot injection shell coating, thick NPLs with superior optical properties including a high photoluminescence quantum yield of 88% are achieved. These NPLs emitting at 701 nm exhibit a full-width-at-half-maximum of 26 nm, enabled by the successfully maintained quasi-2D shape and minimum defects of the resulting heterostructure. The deep-red light-emitting diode (LED) device fabricated with these NPLs has shown to yield a high external quantum efficiency of 6.8% at 701 nm, which is on par with other types of LEDs in this spectral range. © 2021 Wiley-VCH GmbHItem Open Access Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer(Wiley-VCH Verlag, 2015) Yang, X.; Hernandez-Martinez, P. L.; Dang C.; Mutlugün, E.; Zhang, K.; Demir, Hilmi Volkan; Sun X. W.A colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced electroluminescence by embedding a thin layer of Ag nanoislands into hole transport layer. The maximum external quantum efficiency (EQE) of 7.1% achieved in the present work is the highest efficiency value reported for green-emitting QLEDs with a similar structure, which corresponds to 46% enhancement compared with the reference device. The relevant mechanisms enabling the EQE enhancement are associated with the near-field enhancement via an effective coupling between excitons of the quantum dot emitters and localized surface plasmons around Ag nano-islands, which are found to lead to good agreement between the simulation results and the experimental data, providing us with a useful insight important for plasmonic QLEDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Exciton dynamics in colloidal quantum-dot LEDs under active device operations(American Chemical Society, 2018) Shendre, S.; Sharma, V. K.; Dang C.; Demir, Hilmi VolkanColloidal quantum-dot light-emitting diodes (QLEDs) are lucrative options for color-pure lighting sources. To achieve high-performance QLEDs, besides developing high-efficiency quantum dots (QDs), it is essential to understand their device physics. However, little understanding of the QD emission behavior in active QLEDs is one of the main factors hindering the improvement of device efficiency. In this work, we systematically studied the exciton dynamics of gradient composition CdSe@ZnS QDs during electroluminescence in a working QLED. With time-resolved photoluminescence analyses using fluorescence lifetime imaging microscopy we analyzed a large population of QDs spatially spreading over an extended area inside and outside the device. This allows us to reveal the statistically significant changes in the behavior of QD emission in the device at different levels of applied voltages and injection currents. We find that the QD emission efficiency first drops in device fabrication with Al electrode deposition and that the QD exciton lifetime is then statistically reduced further under the QLED's working conditions. This implies the nonradiative Auger recombination process is active in charged QDs as a result of imbalanced charge injection in a working QLED. Our results help to understand the exciton behavior during the operation of a QLED and demonstrate a new approach to explore the exciton dynamics statistically with a large QD population.Item Open Access High external quantum efficiency light-emitting diodes enabled by advanced heterostructures of type-ii nanoplatelets(American Chemical Society, 2023-03-13) Durmusoglu, Emek G.; Hu, Sujuan; Hernandez-Martinez, Pedro Ludwig; Izmir, Merve; Shabani,Farzan; Guo, Min; Gao, Huayu; Isik, Furkan; Delikanli, Savas; Sharma, Vijay Kumar; Liu, Baiquan; Demir, Hilmi VolkanColloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts. Unlike traditional type-II NPLs such as CdSe/CdTe, CdTe/CdSe, and CdSe/CdSexTe1–x core/crown heterostructures, here the proposed advanced heterostructure reaps the benefits of having two type-II transition channels, resulting in a high quantum yield (QY) of 83% and a long fluorescence lifetime of 73.3 ns. These type-II transitions were confirmed experimentally by optical measurements and theoretically using electron and hole wave function modeling. Computational study shows that the multi-crowned NPLs provide a better-distributed hole wave function along the CdTe crown, while the electron wave function is delocalized in the CdSe core and CdSe crown layers. As a proof-of-concept demonstration, NPL-LEDs based on these multi-crowned NPLs were designed and fabricated with a record high external quantum efficiency (EQE) of 7.83% among type-II NPL-LEDs. These findings are expected to induce advanced designs of NPL heterostructures to reach a fascinating level of performance, especially in LEDs and lasers.Item Open Access High external quantum efficiency light-emitting diodes enabled by advanced heterostructures of Type-II nanoplatelets(American Chemical Society, 2023-04-25) Durmuşoğlu, E. G.; Hu, S.; Hernandez-Martinez, P. L.; İzmir, M.; Shabani, Farzan; Guo, M.; Gao, H.; Işık, Furkan; Delikanlı, Savaş; Sharma, V. K.; Liu, B.; Demir, Hilmi VolkanColloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts. Unlike traditional type-II NPLs such as CdSe/CdTe, CdTe/CdSe, and CdSe/CdSexTe1–x core/crown heterostructures, here the proposed advanced heterostructure reaps the benefits of having two type-II transition channels, resulting in a high quantum yield (QY) of 83% and a long fluorescence lifetime of 73.3 ns. These type-II transitions were confirmed experimentally by optical measurements and theoretically using electron and hole wave function modeling. Computational study shows that the multi-crowned NPLs provide a better-distributed hole wave function along the CdTe crown, while the electron wave function is delocalized in the CdSe core and CdSe crown layers. As a proof-of-concept demonstration, NPL-LEDs based on these multi-crowned NPLs were designed and fabricated with a record high external quantum efficiency (EQE) of 7.83% among type-II NPL-LEDs. These findings are expected to induce advanced designs of NPL heterostructures to reach a fascinating level of performance, especially in LEDs and lasers.Item Open Access High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles(American Chemical Society, 2016) Xing, J.; Yan, F.; Zhao Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, Hilmi Volkan; Sun, X.; Huan, A.; Xiong, Q.Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices. © 2016 American Chemical Society.Item Open Access Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes(American Chemical Society, 2018) Yan, F.; Xing, J.; Xing, G.; Quan, L.; Tan S.T.; Zhao, J.; Su, R.; Zhang, L.; Chen, S.; Zhao Y.; Huan, A.; Sargent, E. H.; Xiong, Q.; Demir, Hilmi VolkanLead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a maximum external quantum efficiency of 12.9% and a power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.Item Open Access Light extraction efficiency enhancement of colloidal quantum dot light-emitting diodes using large-scale nanopillar arrays(Wiley-VCH Verlag, 2014) Yang, X.; Dev, K.; Wang, J.; Mutlugun, E.; Dang, C.; Zhao Y.; Liu, S.; Tang, Y.; Tan S.T.; Sun, X. W.; Demir, Hilmi VolkanA colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced light extraction efficiency by applying a layer of large-scale, low-cost, periodic nanopillar arrays. Zinc oxide nanopillars are grown on the glass surface of the substrate using a simple, efficient method of non-wetting templates. With the layer of ZnO nanopillar array as an optical outcoupling medium, a record high current efficiency (CE) of 26.6 cd/A is achieved for QLEDs. Consequently, the corresponding external quantum efficiency (EQE) of 9.34% reaches the highest EQE value for green-emitting QLEDs. Also, the underlying physical mechanisms enabling the enhanced light-extraction are investigated, which leads to an excellent agreement of the numerical results based on the mode theory with the experimental measurements. This study is the first account for QLEDs offering detailed insight into the light extraction efficiency enhancement of QLED devices. The method demonstrated here is intended to be useful not only for opening up a ubiquitous strategy for designing high-performance QLEDs but also with respect to fundamental research on the light extraction in QLEDs.Item Open Access Solvent-assisted surface engineering for high-performance all-inorganic perovskite nanocrystal light-emitting diodes(American Chemical Society, 2018) Wang, L.; Liu, B.; Zhao, X.; Demir, Hilmi Volkan; Gu, H.; Sun, H.All-inorganic cesium halide perovskite nanocrystals have attracted much interest in optoelectronic applications for the sake of the readily adjustable band gaps, high photoluminescence quantum yield, pure color emission, and affordable cost. However, because of the ineluctable utilization of organic surfactants during the synthesis, the structural and optical properties of CsPbBr3 nanocrystals degrade upon transforming from colloidal solutions to solid thin films, which plagues the device operation. Here, we develop a novel solvent-assisted surface engineering strategy, producing high-quality CsPbBr3 thin films for device applications. A good solvent is first introduced as an assembly trigger to conduct assembly in a one-dimensional direction, which is then interrupted by adding a nonsolvent. The nonsolvent drives the adjacent nanoparticles connecting in a two-dimensional direction. Assembled CsPbBr3 nanocrystal thin films are densely packed and very smooth with a surface roughness of ∼4.8 nm, which is highly desirable for carrier transport in a light-emitting diode (LED) device. Meanwhile, the film stability is apparently improved. Benefiting from this facile and reliable strategy, we have achieved remarkably improved performance of CsPbBr3 nanocrystal-based LEDs. Our results not only enrich the methods of nanocrystal surface engineering but also shed light on developing high-performance LEDs.Item Open Access π-Conjugated nanostructured materials: preparation, properties and photonic applications(Royal Society of Chemistry, 2019) Tuncel, DönüşThis article reviews recent advances in π-conjugated nanostructures based on conjugated oligomers and polymers, focusing on their preparation, energy transfer abilities, optoelectronic and laser applications, and photophysical properties including light harvesting. This is a rapidly evolving field as these materials are expected to have many important applications in areas such as light-emitting diodes, solid-state lighting, photovoltaics, solid-state lasers, biophotonics, sensing, imaging, photocatalysis, and photodynamic therapy. Other advantages of these materials are their versatility, and consequently, their adaptability to diverse fields.