Browsing by Subject "Light propagation"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access Accumulated Gouy phase shift in Gaussian beam propagation through first-order optical systems(Optical Society of America, 1997-09) Erden, M. F.; Özaktaş, Haldun M.We define the accumulated Gouy phase shift as the on-axis phase accumulated by a Gaussian beam in passing through an optical system, in excess of the phase accumulated by a plane wave. We give an expression for the accumulated Gouy phase shift in terms of the parameters of the system through which the beam propagates. This quantity complements the beam diameter and the wave-front radius of curvature to constitute three parameters that uniquely characterize the beam with respect to a reference point in the system. Measurement of these parameters allows one to uniquely recover the parameters characterizing the first-order system through which the beam propagates.Item Open Access Asymmetric light propagation in chirped photonic crystal waveguides(Optical Society of American (OSA), 2012) Kurt H.; Yilmaz, D.; Akosman, A.E.; Özbay, EkmelWe report numerical and experimental investigations of asymmetric light propagation in a newly designed photonic structure that is formed by creating a chirped photonic crystal (PC) waveguide. The use of a non-symmetric distribution of unit cells of PC ensures the obtaining of asymmetric light propagation. Properly designing the spatial modulation of a PC waveguide inherently modifies the band structure. That in turn induces asymmetry for the light's followed path. The investigation of the transmission characteristics of this structure reveals optical diode like transmission behavior. The amount of power collected at the output of the waveguide centerline is different for the forward and backward propagation directions in the designed configuration. The advantageous properties of the proposed approach are the linear optic concept, compact configuration and compatibility with the integrated photonics. These features are expected to hold great potential for implementing practical optical rectifier-type devices. © 2012 Optical Society of America.Item Open Access Femtosecond self-doubling optical parametric oscillator based on KTiOAsO4(IEEE, 2003) Kartaloğlu, T.; Aytür, O.We report a femtosecond intracavity-frequency-doubled optical parametric oscillator that employs a single KTiOAsO4 crystal for both parametric generation and frequency doubling. This device generates a yellow output beam at 575 nm with 39.4% power conversion efficiency when synchronously pumped by a femtosecond Ti:sapphire laser at a wavelength of 796 nm. An intracavity retarder is employed to alleviate temporal pulse overlap problems associated with group velocity mismatch inside the KTiOAsO4 crystal.Item Open Access Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators(Optical Society of America, 1994) Özaktaş, Haldun M.; Mendlovic, D.The complex amplitude distributions on two spherical reference surfaces of given curvature and spacing are simply related by a fractional Fourier transform. The order of the fractional Fourier transform is proportional to the Gouy phase shift between the two surfaces. This result provides new insight into wave propagation and spherical mirror resonators as well as the possibility of exploiting the fractional Fourier transform as a mathematical tool in analyzing such systems.Item Open Access Generation of parabolic bound pulses from a Yb-fiber laser(Optical Society of American (OSA), 2006) Ortaç, B.; Hideur, A.; Brunel, M.; Chédot, C.; Limpert J.; Tünnermann, A.; Ilday F.Ö.We report the observation of self-similar propagation of bound-state pulses in an ytterbium-doped double-clad fiber laser. A bound state of two positively chirped parabolic pulses with 5.4 ps duration separated by 14.9 ps is obtained, with 1.7 nJ of energy per pulse. These pulses are extra-cavity compressed to 100 fs. For higher pumping power and a different setting of the intra-cavity polarization controllers, the laser generates a bound state of three chirped parabolic pulses with different time separations and more than 1.5 nJ energy per pulse. Perturbation of this bound state by decreasing pump power results in the generation of a single pulse and a two-pulse bound state both structures traveling at the same velocity along the cavity. A possible explanation of the zero relative speed by a particular phase relation of the bound states is discussed. ©2006 Optical Society of America.Item Open Access High-Q silicon-on-insulator optical rib waveguide racetrack resonators(Optical Society of American (OSA), 2005) Kiyat I.; Aydınlı, Atilla; Dagli, N.In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB. © 2005 Optical Society of America.Item Open Access Negative refraction and subwavelength focusing using photonic crystals(SPIE, 2005-01) Özbay, Ekmel; Aydın, Koray; Alıcı, Kamil Boratay; Güven, KaanWe review certain novel optical properties of two-dimensional dielectric photonic crystals (PCs) which exhibit negative refraction behavior. We investigate two mechanisms which utilize the band structure of the PC and lead to a negative effective index of refraction (neff < 0). The negative refraction phenomenon is demonstrated experimentally and by simulations when the incident beam couples to a photonic band with neff < 0. Further, the PC slab acts like a focusing lens to an omnidirectional source where the properties of focusing depends on the details of the band structure. In one case, by utilizing the TM polarized first band, an image of the source can be formed in the vicinity of the interface with subwavelength resolution. In another case, a TE polarized upper band is used which is able to focus the omnidirectional field far away from the interface with a resolution on par with the wavelength. In the latter case, we explicitly show the flat lens behavior of the structure. These examples indicate that PC based lenses can surpass limitations of conventional lenses and greatly enhance and extend optics applications.Item Open Access Optimal image restoration with the fractional Fourier transform(OSA - The Optical Society, 1998-04) Kutay, M. A.; Özaktaş, Haldun M.The classical Wiener filter, which can be implemented in O(N log N) time, is suited best for space-invariant degradation models and space-invariant signal and noise characteristics. For space-varying degradations and nonstationary processes, however, the optimal linear estimate requires O(N2) time for implementation. Optimal filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain Wiener filtering for certain types of degradation and noise while requiring only O(N log N) implementation time. The amount of reduction in error depends on the signal and noise statistics as well as on the degradation model. The largest improvements are typically obtained for chirplike degradations and noise, but other types of degradation and noise may also benefit substantially from the method (e.g., nonconstant velocity motion blur and degradation by inhomegeneous atmospheric turbulence). In any event, these reductions are achieved at no additional cost. © 1998 Optical Society of America.Item Open Access Physics and applications of photonic crystals(Nanotechnology Research Center NANOTAM, 2004) Özbay, Ekmel; Bulu I.; Aydin, K.; Caglayan H.; Guven, K.In this article, we investigate how the photonic band gaps and the variety of band dispersions of photonic crystals can be utilized for various applications and how they further give rise to completely novel optical phenomena. The enhancement of spontaneous emission through coupled cavity waveguides in a one-dimensional silicon nitride photonic microcrystal is investigated. We then present the highly directive radiation from sources embedded in two-dimensional photonic crystals. The manifestation of novel and intriguing optical properties of photonic crystals are exemplified experimentally by the negative refraction and the focusing of electromagnetic waves through a photonic crystal slab with subwavelength resolution. © 2004 Elsevier B.V. All rights reserved.Item Open Access Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation(Institute of Electrical and Electronics Engineers, 1999-06) Dikmelik, Y.; Akgün, G.; Aytür, O.This paper presents a theoretical analysis of sum-frequency generating optical parametric oscillators where a single nonlinear crystal is used for both parametric generation and sum-frequency generation. In these devices, the parametric and sum-frequency generation processes are both phase matched for the same direction of propagation inside the crystal. Different polarization geometries for which this simultaneous phase-matching condition can potentially be satisfied are identified and categorized, for both birefringent and quasi-phase-matching methods. Plane-wave coupled-mode equations are presented for each of these categories. Solutions of these coupled mode equations and calculation of the single-pass saturated signal gain are outlined. Intracavity signal photon flux density calculations based on these solutions lead to stable steady-state upconversion, multistability, and chaos. The dependence of the photon conversion efficiency on various design parameters are investigated.Item Open Access Some mathematical properties of the uniformly sampled quadratic phase function and associated issues in digital Fresnel diffraction simulations(SPIE - International Society for Optical Engineering, 2004) Onural, L.The quadratic phase function is fundamental in describing and computing wave-propagation-related phenomena under the Fresnel approximation; it is also frequently used in many signal processing algorithms. This function has interesting properties and Fourier transform relations. For example, the Fourier transform of the sampled chirp is also a sampled chirp for some sampling rates. These properties are essential in interpreting the aliasing and its effects as a consequence of sampling of the quadratic phase function, and lead to interesting and efficient algorithms to simulate Fresnel diffraction. For example, it is possible to construct discrete Fourier transform (DFT)-based algorithms to compute exact continuous Fresnel diffraction patterns of continuous, not necessarily, periodic masks at some specific distances. © 2004 Society of Photo-Optical Instrumentation Engineers.Item Open Access Spectrally accelerated biconjugate gradient stabilized method for scattering from and propagation over electrically large inhomogeneous geometries(John Wiley & Sons, 2005) Babaoglu, B.; Altintas, A.; Ertürk, V. B.Scattering from and propagation over rough-terrain profiles, as well as reentrant surfaces are investigated using an integral equation (IE)-based spectrally accelerated biconjugate gradient stabilized (SA-BiCGSTAB) method, with a storage requirement and a computational cost of O(N) per iteration, where N is the surface unknowns in the discretized IE. Numerical results in the form of current and path loss are presented and compared with previously published as well as measured results in order to assess the accuracy and efficiency of this method.