Browsing by Subject "Life-times"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Balancing energy loads in wireless sensor networks through uniformly quantized energy levels-based clustering(IEEE, 2010) Ali, Syed Amjad; Sevgi, Cüneyt; Kocyigit, A.Clustering is considered a common and an effective method to prolong the lifetime of a wireless sensor network. This paper provides a new insight into the cluster formation process based on uniformly quantizing the residual energy of the sensor nodes. The unified simulation framework provided herein, not only aids to reveal an optimum number of clusters but also the required number of quantization levels to maximize the network's lifetime by improving energy load balancing for both homogeneous and heterogeneous sensor networks. The provided simulation results clearly show that the uniformly quantized energy level-based clustering provides improved load balancing and hence, a longer network lifetime than existing methods. © 2010 IEEE.Item Open Access Glucose sensors based on electrospun nanofibers: a review(Springer Verlag, 2016) Senthamizhan, A.; Balusamy, B.; Uyar, TamerThe worldwide increase in the number of people suffering from diabetes has been the driving force for the development of glucose sensors. The recent past has devised various approaches to formulate glucose sensors using various nanostructure materials. This review presents a combined survey of these various approaches, with emphasis on the current progress in the use of electrospun nanofibers and their composites. Outstanding characteristics of electrospun nanofibers, including high surface area, porosity, flexibility, cost effectiveness, and portable nature, make them a good choice for sensor applications. Particularly, their nature of possessing a high surface area makes them the right fit for large immobilization sites, resulting in increased interaction with analytes. Thus, these electrospun nanofiber-based glucose sensors present a number of advantages, including increased life time, which is greatly needed for practical applications. Taking all these facts into consideration, we have highlighted the latest significant developments in the field of glucose sensors across diverse approaches.Item Open Access Study of junction and bias parameters in readout of phase qubits(2012) Zandi H.; Safaei, S.; Khorasani, S.; Fardmanesh, M.The exact numerical solution of the nonlinear Ginzburg-Landau equation for Josephson junctions is obtained, from which the precise nontrivial current density and effective potential of the Josephson junctions are found. Based on the resulting potential well, the tunneling probabilities of the associated bound states are computed which are in complete agreement with the reported experimental data. The effects of junction and bias parameters such as thickness of the insulating barrier, cross sectional area, bias current, and magnetic field are fully investigated using a successive perturbation approach. We define and compute figures of merit for achieving optimal operation of phase qubits and measurements of the corresponding states. Particularly, it is found that Josephson junctions with thicker barriers yield better performance in measurements of phase qubits. The variations of characteristic parameters such as life time of the states due to the above considered parameters are also studied and discussed to obtain the appropriate configuration setup.