BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Liesegang pattern"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanically controlled liesegang pattern formation in stretchable polyacrylamide gels for elastic deformation tracking
    (2019-07) Morsali, Mohammad
    Pattern formation in nature has been intellectually appealing for many scientists since antiquity. Simultaneous diffusion and reaction of chemicals in gel media may lead to precipitation and complex pattern formation through self-assembly. Periodic precipitations patterns, also known as Liesegang patterns (LP), are one of the stimulating examples of such self-assembling reaction-diffusion systems. So far, it was shown that LP’s periodic band structure and their unique geometry can be controlled by controlling the reaction parameters (e.g. concentration of the reactants) and affecting the reaction medium (e.g. external electrical field). However, so far, the research on LPs have been concentrated mostly around how these patterns are forming, to retrieve information to build a universal mathematical model for them. Although there are studies showing the effect of external fields on the development of these patterns, to the best of our knowledge, so far, there is no example of these systems, used to retrieve information about the changes in the environment as they form. Here, we first show the formation of Liesegang rings by a diffusion-precipitation reaction in a stretchable hydrogel. Then, we present how to use these patterns to ‘read’ the duration, the extent, and the direction of gel deformation. Also, we describe deviations from LP behavior for the patterns (spacing that can be mathematically defined by a geometrical series) formed after the unloading. We believe this first display of such an ‘environmental sensing’ to be a starting point for more investigations on many aesthetically appealing and mathematically challenging self-assembled systems, which have been studied for decades.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback