BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Li nucleation and growth"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Roll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries
    (Beijing Youse Jinshu Yanjiu Zongyuan, 2024-07-22) Liu, Ke-Xin; Tan, Ran; Zheng, Zhong; Zhao, Rui-Rui; Ülgüt, Burak; Ai, Xin-Ping; Qian, Jiang-Feng
    Lithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li parallel to Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh.cm(-2), achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback