Browsing by Subject "Laplace equation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fast multipole methods in service of various scientific disciplines(IEEE, 2014) Gürel, LeventFor more than two decades, several forms of fast multipole methods have been extremely successful in various scientific disciplines. Reduced complexity solutions are obtained for solving different forms of equations that are derived from Maxwell's equations, such as Helmholtz's equation for electrodynamics and Laplace's equation for electrostatics. Fast multipole solvers are developed for and applied to the integral equations derived from Helmholtz's and Laplace's equations. Fast multipole solvers are kernel-dependent techniques, i.e., they rely on certain analytical properties of the integral-equation kernels, such as diagonalizability. Electromagnetics is not the only discipline benefiting from the fast multipole methods; a plethora of computations in various disciplines, such as the solution of Schroedinger's equation in quantum mechanics and the calculation of gravitational force in astrophysics, to name a few, exploit the reduced-complexity nature of the fast multipole methods. Acoustics, molecular dynamics, structural mechanics, and fluid dynamics can be mentioned as other disciplines served by the fast multipole methods. © 2014 IEEE.Item Open Access Spectra of self-similar Laplacians on the Sierpinski gasket with twists(World Scientific Publishing Co. Pte. Ltd., 2008) Blasiak, A.; Strichartz, R. S.; Ugurcan, B. E.We study the spectra of a two-parameter family of self-similar Laplacians on the Sierpinski gasket (SG) with twists. By this we mean that instead of the usual IFS that yields SG as its invariant set, we compose each mapping with a reflection to obtain a new IFS that still has SG as its invariant set, but changes the definition of self-similarity. Using recent results of Cucuringu and Strichartz, we are able to approximate the spectra of these Laplacians by two different methods. To each Laplacian we associate a self-similar embedding of SG into the plane, and we present experimental evidence that the method of outer approximation, recently introduced by Berry, Goff and Strichartz, when applied to this embedding, yields the spectrum of the Laplacian (up to a constant multiple). © 2008 World Scientific Publishing Company.