Browsing by Subject "Label-free"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access High-throughput, high-resolution interferometric light microscopy of biological nanoparticles(American Chemical Society, 2020-01) Yurdakul, C.; Avcı, O.; Matlock, A.; Devaux, A. J.; Quintero, M. V.; Özbay, Ekmel; Davey, R. A.; Connor, J. H.; Karl, W. C.; Tian, L.; Ünlü, M. SelimLabel-free, visible light microscopy is an indispensable tool for studying biological nanoparticles (BNPs). However, conventional imaging techniques have two major challenges: (i) weak contrast due to low-refractive-index difference with the surrounding medium and exceptionally small size and (ii) limited spatial resolution. Advances in interferometric microscopy have overcome the weak contrast limitation and enabled direct detection of BNPs, yet lateral resolution remains as a challenge in studying BNP morphology. Here, we introduce a wide-field interferometric microscopy technique augmented by computational imaging to demonstrate a 2-fold lateral resolution improvement over a large field-of-view (>100 × 100 μm2 ), enabling simultaneous imaging of more than 104 BNPs at a resolution of ∼150 nm without any labels or sample preparation. We present a rigorous vectorial-optics-based forward model establishing the relationship between the intensity images captured under partially coherent asymmetric illumination and the complex permittivity distribution of nanoparticles. We demonstrate high-throughput morphological visualization of a diverse population of Ebola virus-like particles and a structurally distinct Ebola vaccine candidate. Our approach offers a low-cost and robust label-free imaging platform for high-throughput and high-resolution characterization of a broad size range of BNPs.Item Open Access Nanogap based label-free impedimetric biosensors(2012) Hanoğlu, OğuzDespite lots of research going on to find a hope, cancer is still a major cause of death in today‘s world. It has been reported that cancer has some biomarkers in human body and detecting these biomarkers timely can pave the way for early detection and successful treatments. Point-of-care biosensors are highly promising for this mission. If these biosensors can achieve sensitivity and reliability with a low-cost and simple platform, they can address a large mass of people who are at the early stages of cancer without any clear symptoms yet. For this purpose, various biosensing mechanisms can be used to convert the signal coming from the recognition elements on the biosensor surface to the digital domain for signal processing. One of these mechanisms, impedimetric (impedance based) sensing is a very appealing electrical biosensing method since this method can offer label-free, low-cost, low-power requirement, miniaturizable, and chip-integrable detection platforms. However, impedimetric sensing in liquid medium is problematic, since during the electrical measurements, ion-based undesired layers (electrical double layers) are formed over the electrodes in the target liquid. Unfortunately, these layers act like a shield against the applied electric field to the liquid and can prevent the detection of the target biomarkers. In this thesis, a nanogap based label-free biosensor structure is designed and using this design impedimetric sensing in liquid medium is demonstrated at low frequencies (1 kHz – 100 kHz). Low frequency platforms are quite amenable to low-cost applications like point-of-care biosensing. The designed structure utilizes nanometer scale electrode separation (nanogap). Theoretical calculations show that nanogap reduces the undesired effect of electrical double layer. Moreover, nanogap also helps in minimizing the volume of the required liquid for the measurement. Design, fabrication, surface functionalization and biotinylation stages of the biosensor are realized in a cleanroom environment and biomimetic materials laboratory. The fabricated biosensor is tested by introducing the target molecules (streptavidin) in a phosphate-buffered saline solution. A parameter analyzer with a capacitance-voltage unit and a probe station are used for the impedance measurements. With these biosensors, label-free detection of streptavidin is observed for 100 µg/mL, 10 µg/mL, 1 µg/mL, 100 ng/mL and 10 ng/mL concentrations. This is, to the best of our knowledge, the first demonstration of streptavidin detection in nanogap based label-free impedimetric biosensors. The above-mentioned concentrations show that these biosensors are promising for commercial applications. Sensitivity to the dielectric constant of the target medium is measured to be 132 pF per unit change in the dielectric constant at 10 kHz measurement frequency. Reliability tests are performed: stable and repeatable operation of the sensors are checked and verified. In conclusion, this proof-of-concept study shows that nanogap based biosensors would be a suitable and appealing choice for sensitive, reliable, simple, low-power and low-cost point-of care biosensing applications. Next step would be utilizing the platform presented in this work in detecting specific cancer biomarkers like PSA or CA125. Thereby, developed further and commercialized, nanogap based label-free impedimetric biosensors can act in the battle of human being against cancer in the future.Item Open Access Real-time impedimetric microfluidic droplet measurement: IDM(2019-08) Saateh, AbtinDroplet-based micro uidic systems require a precise control on droplet physical properties, hence measuring the morphological properties of droplets is critical to obtain high sensitivity analysis. The ability to perform such measurements in real-time is another demand which has not been addressed yet. In this study, coplanar electrodes were used, and con gured in di erential measurement mode for impedimetric measurement of size and velocity. To obtain the size of the droplets, detailed 3D nite element simulations of the system were performed. The interaction of the non-uniform electric eld and the droplet was investigated. The electrode geometry optimization steps were described and design guideline rules were laid out. Size of the electrodes was optimized based on the simulations for droplet lengths ranging from 300 to 1500 μm. A user-friendly software was developed for real-time observation of droplet length and velocity together with in-situ statistical analysis results. A detailed comparison between impedimetric and optical measurement tools is given. Finally, to illustrate the bene t of having real-time analysis, iDM was used for experimental studies. First study case is the response time of the syringe pump and pressure pump driven droplet generation devices. This analysis allows one to evaluate the `warm-up' time for a droplet generator system after which droplets reach the desired stead-state size required by the assay of interest. Second, an evaluation chip was designed to investigate e ective factors and their interplay with droplet length variation. A comprehensive design of experiment (DoE) method is utilized. Analyzing the obtained results revealed e ect of each factor and their interactions. Exploiting results of this study contributes to monodisperse micro uidic droplet generation. Monodisperse polymeric particles of polyethylene glycol were synthesized to demonstrate the potentials of monodisperse droplet generation in biochemical synthesis/analysis.