Browsing by Subject "LDPC code design"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Code design for binary energy harvesting channel(IEEE, 2017) Dabirnia, Mehdi; Duman, Tolga M.We consider a binary energy harvesting communication system with a finite battery transmitter over a noisy channel, and design explicit and implementable codes based on concatenation of a nonlinear trellis code (NLTC) with an outer low density parity check (LDPC) code. We propose two different decoding methods where the simplified one ignores the memory in the battery state while the more sophisticated one utilizes the memory. Numerical results demonstrate that the designed codes outperform other reference schemes. The results also show the superiority of the improved decoding approach over the naive solution.Item Open Access Coding for two-user energy harvesting interference channel(IEEE, 2020) Dabirnia, Mehdi; Duman, Tolga M.A two-user interference channel with energy harvesting transmitters, each equipped with a finite battery, is considered. Achievable rate regions (ARRs) considering independent and identically distributed Shannon strategies at both users and ignoring the memory in the battery state are obtained for both single-user decoding and joint decoding at the receivers. Explicit and implementable codes based on concatenation of a nonlinear trellis code (NLTC) with an outer low-density parity-check code are designed, and it is demonstrated that rate pairs close to the boundary of ARR can be obtained with this approach. Furthermore, an improved alternative decoding scheme which exploits the memory in the battery state is developed, and it is shown to be highly superior to the simple decoding approach via numerical examples. Superiority of the newly developed practical channel coding solutions over the previously known alternative approaches are illustrated via extensive set of examples as well.