BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Kronecker product"

Filter results by typing the first few letters
Now showing 1 - 7 of 7
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analyzing large sparse Markov chains of Kronecker products
    (IEEE, 2009) Dayar, Tuğrul
    Kronecker products are used to define the underlying Markov chain (MC) in various modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that are an order of magnitude larger can be analyzed on the same platform. In the Kronecker based approach, the generator matrix underlying the MC is represented using Kronecker products [6] of smaller matrices and is never explicitly generated. The implementation of transient and steady-state solvers rests on this compact Kronecker representation, thanks to the existence of an efficient vector-Kronecker product multiplication algorithm known as the shuffle algorithm [6]. The transient distribution can be computed through uniformization using vector-Kronecker product multiplications. The steady-state distribution also needs to be computed using vector-Kronecker product multiplications, since direct methods based on complete factorizations, such as Gaussian elimination, normally introduce new nonzeros which cannot be accommodated. The two papers [2], [10] provide good overviews of iterative solution techniques for the analysis of MCs based on Kronecker products. Issues related to reachability analysis, vector-Kronecker product multiplication, hierarchical state space generation in Kronecker based matrix representations for large Markov models are surveyed in [5]. Throughout our discussion, we make the assumption that the MC at hand does not have unreachable states, meaning it is irreducible. And we take an algebraic view [7] to discuss recent results related to the analysis of MCs based on Kronecker products independently from modeling formalisms. We provide background material on the Kronecker representation of the generator matrix underlying a CTMC, show that it has a rich structure which is nested and recursive, and introduce a small CTMC whose generator matrix is expressed as a sum of Kronecker products; this CTMC is used as a running example throughout the discussion. We also consider preprocessing of the Kronecker representation so as to expedite numerical analysis. We discuss permuting the nonzero structure of the underlying CTMC symmetrically by reordering, changing the orders of the nested blocks by grouping, and reducing the size of the state space by lumping. The steady-state analysis of CTMCs based on Kronecker products is discussed for block iterative methods, multilevel methods, and preconditioned projection methods, respectively. The results can be extended to DTMCs based on Kronecker products with minor modifications. Areas that need further research are mentioned as they are discussed. Our contribution to this area over the years corresponds to work along iterative methods based on splittings and their block versions [11], associated preconditioners to be used with projection methods [4], near complete decomposability [8], a method based on iterative disaggregation for a class of lumpable MCs [9], a class of multilevel methods [3], and a recent method based on decomposition for weakly interacting subsystems [1]. © 2009 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compact representation of solution vectors in Kronecker-based Markovian analysis
    (Springer, 2016-08) Buchholz, P.; Dayar, Tuğrul; Kriege, J.; Orhan, M. Can
    It is well known that the infinitesimal generator underlying a multi-dimensional Markov chain with a relatively large reachable state space can be represented compactly on a computer in the form of a block matrix in which each nonzero block is expressed as a sum of Kronecker products of smaller matrices. Nevertheless, solution vectors used in the analysis of such Kronecker-based Markovian representations still require memory proportional to the size of the reachable state space, and this becomes a bigger problem as the number of dimensions increases. The current paper shows that it is possible to use the hierarchical Tucker decomposition (HTD) to store the solution vectors during Kroneckerbased Markovian analysis relatively compactly and still carry out the basic operation of vector-matrix multiplication in Kronecker form relatively efficiently. Numerical experiments on two different problems of varying sizes indicate that larger memory savings are obtained with the HTD approach as the number of dimensions increases. © Springer International Publishing Switzerland 2016.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Decompositional analysis of Kronecker structured Markov chains
    (Kent State University, 2008) Bao, Y.; Bozkur, I. N.; Dayar, T.; Sun, X.; Trivedi, K. S.
    This contribution proposes a decompositional iterative method with low memory requirements for the steadystate analysis ofKronecker structured Markov chains. The Markovian system is formed by a composition of subsystems using the Kronecker sum operator for local transitions and the Kronecker product operator for synchronized transitions. Even though the interactions among subsystems, which are captured by synchronized transitions, need not be weak, numerical experiments indicate that the solver benefits considerably from weak interactions among subsystems, and is to be recommended specifically in this case. © 2008, Kent State University.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    On compact solution vectors in Kronecker-based Markovian analysis
    (Elsevier, 2017) Buchholz, P.; Dayar T.; Kriege, J.; Orhan, M. C.
    State based analysis of stochastic models for performance and dependability often requires the computation of the stationary distribution of a multidimensional continuous-time Markov chain (CTMC). The infinitesimal generator underlying a multidimensional CTMC with a large reachable state space can be represented compactly in the form of a block matrix in which each nonzero block is expressed as a sum of Kronecker products of smaller matrices. However, solution vectors used in the analysis of such Kronecker-based Markovian representations require memory proportional to the size of the reachable state space. This implies that memory allocated to solution vectors becomes a bottleneck as the size of the reachable state space increases. Here, it is shown that the hierarchical Tucker decomposition (HTD) can be used with adaptive truncation strategies to store the solution vectors during Kronecker-based Markovian analysis compactly and still carry out the basic operations including vector–matrix multiplication in Kronecker form within Power, Jacobi, and Generalized Minimal Residual methods. Numerical experiments on multidimensional problems of varying sizes indicate that larger memory savings are obtained with the HTD approach as the number of dimensions increases. © 2017 Elsevier B.V.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    On compact vector formats in the solution of the chemical master equation with backward differentiation
    (John Wiley and Sons, 2018) Dayar, Tuğrul; Orhan, M. C.
    A stochastic chemical system with multiple types of molecules interacting through reaction channels can be modeled as a continuous-time Markov chain with a countably infinite multidimensional state space. Starting from an initial probability distribution, the time evolution of the probability distribution associated with this continuous-time Markov chain is described by a system of ordinary differential equations, known as the chemical master equation (CME). This paper shows how one can solve the CME using backward differentiation. In doing this, a novel approach to truncate the state space at each time step using a prediction vector is proposed. The infinitesimal generator matrix associated with the truncated state space is represented compactly, and exactly, using a sum of Kronecker products of matrices associated with molecules. This exact representation is already compact and does not require a low-rank approximation in the hierarchical Tucker decomposition (HTD) format. During transient analysis, compact solution vectors in HTD format are employed with the exact, compact, and truncated generated matrices in Kronecker form, and the linear systems are solved with the Jacobi method using fixed or adaptive rank control strategies on the compact vectors. Results of simulation on benchmark models are compared with those of the proposed solver and another version, which works with compact vectors and highly accurate low-rank approximations of the truncated generator matrices in quantized tensor train format and solves the linear systems with the density matrix renormalization group method. Results indicate that there is a reason to solve the CME numerically, and adaptive rank control strategies on compact vectors in HTD format improve time and memory requirements significantly. Copyright
  • Loading...
    Thumbnail Image
    ItemOpen Access
    On the numerical solution of Kronecker-based infinite level-dependent QBD processes
    (2013) Baumann, H.; Dayar, T.; Orhan, M. C.; Sandmann, W.
    Infinite level-dependent quasi-birth-and-death (LDQBD) processes can be used to model Markovian systems with countably infinite multidimensional state spaces. Recently it has been shown that sums of Kronecker products can be used to represent the nonzero blocks of the transition rate matrix underlying an LDQBD process for models from stochastic chemical kinetics. This paper extends the form of the transition rates used recently so that a larger class of models including those of call centers can be analyzed for their steady-state. The challenge in the matrix analytic solution then is to compute conditional expected sojourn time matrices of the LDQBD model under low memory and time requirements after truncating its countably infinite state space judiciously. Results of numerical experiments are presented using a Kronecker-based matrix-analytic solution on models with two or more countably infinite dimensions and rules of thumb regarding better implementations are derived. In doing this, a more recent approach that reduces memory requirements further by enabling the computation of steady-state expectations without having to obtain the steady-state distribution is also considered. © 2013 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Steady-state analysis of a multiclass MAP/PH/c queue with acyclic PH retrials
    (Applied Probability Trust, 2016) Dayar T.; Orhan, M. C.
    A multiclass c-server retrial queueing system in which customers arrive according to a class-dependent Markovian arrival process (MAP) is considered. Service and retrial times follow class-dependent phase-type (PH) distributions with the further assumption that PH distributions of retrial times are acyclic. A necessary and sufficient condition for ergodicity is obtained from criteria based on drifts. The infinite state space of the model is truncated with an appropriately chosen Lyapunov function. The truncated model is described as a multidimensional Markov chain, and a Kronecker representation of its generator matrix is numerically analyzed.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback