BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Kernel Method"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Early diagnosis of acute coronary syndromes automatically by using features of ECG recordings = EKG kayıtlarının öznitelikleri kullanılarak akut koroner sendromların otomatik olarak erken teşhisi
    (2014) Terzi, Merve Begüm
    In patients with acute coronary syndrome, temporary chest pains together with changes in the ST/T sections of ECG occur shortly before the start of myocardial infarction. In order to diagnose acute coronary syndromes early, we propose a new technique which detects changes in the ST/T sections of ECG. For this purpose, by using real ECG recordings, we identify ECG features that are critical in the detection of acute coronary syndromes. By using support vector machines (SVM) operating with linear and radial basis function (RBF) kernels, we obtain classifiers that use 2 or 3 most discriminating features of the ST/T sections. To improve performance, classification results on multiple segments are fused. The obtained results over a considerable number of patients indicate that the proposed classification technique provides highly reliable detection of acute coronary syndromes. To develop a detection technique that can be used in the absence of unhealthy ECGs, we also investigate the detection of acute coronary syndromes based on ECG recordings of a patient obtained during healthy stage only. For this purpose, a Gaussian mixture model is used to represent the joint pdf of the selected features. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute coronary syndromes.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback