Browsing by Subject "K-means clustering"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Improving the performance of similarity joins using graphics processing unit(2012) Korkmaz, ZeynepThe similarity join is an important operation in data mining and it is used in many applications from varying domains. A similarity join operator takes one or two sets of data points and outputs pairs of points whose distances in the data space is within a certain threshold value, ". The baseline nested loop approach computes the distances between all pairs of objects. When considering large set of objects which yield too long query time for nested loop paradigm, accelerating such operator becomes more important. The computing capability of recent GPUs with the help of a general purpose parallel computing architecture (CUDA) has attracted many researches. With this motivation, we propose two similarity join algorithms for Graphics Processing Unit (GPU). To exploit the advantages of general purpose GPU computing, we rst propose an improved nested loop join algorithm (GPU-INLJ) for the speci c environment of GPU. Also we present a partitioning-based join algorithm (KMEANS-JOIN) that guarantees each partition can be joined independently without missing any join pair. Our experiments demonstrate massive performance gains and the suitability of our algorithms for large datasets.Item Open Access Parallel pruning for k-means clustering on shared memory architectures(Springer Verlag, 2001) Gürsoy, Attila; Cengiz, IlkerWe have developed and evaluated two parallelization schemes for a tree-based k-means clustering method on shared memory machines. One scheme is to partition the pattern space across processors. We have determined that spatial decomposition of patterns outperforms random decomposition even though random decomposition has almost no load imbalance problem. The other scheme is the parallel traverse of the search tree. This approach solves the load imbalance problem and performs slightly better than the spatial decomposition, but the efficiency is reduced due to thread synchronizations. In both cases, parallel treebased k-means clustering is significantly faster than the direct parallel k-means. © Springer-Verlag Berlin Heidelberg 2001.