BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "K-means clustering"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving the performance of similarity joins using graphics processing unit
    (2012) Korkmaz, Zeynep
    The similarity join is an important operation in data mining and it is used in many applications from varying domains. A similarity join operator takes one or two sets of data points and outputs pairs of points whose distances in the data space is within a certain threshold value, ". The baseline nested loop approach computes the distances between all pairs of objects. When considering large set of objects which yield too long query time for nested loop paradigm, accelerating such operator becomes more important. The computing capability of recent GPUs with the help of a general purpose parallel computing architecture (CUDA) has attracted many researches. With this motivation, we propose two similarity join algorithms for Graphics Processing Unit (GPU). To exploit the advantages of general purpose GPU computing, we rst propose an improved nested loop join algorithm (GPU-INLJ) for the speci c environment of GPU. Also we present a partitioning-based join algorithm (KMEANS-JOIN) that guarantees each partition can be joined independently without missing any join pair. Our experiments demonstrate massive performance gains and the suitability of our algorithms for large datasets.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Parallel pruning for k-means clustering on shared memory architectures
    (Springer Verlag, 2001) Gürsoy, Attila; Cengiz, Ilker
    We have developed and evaluated two parallelization schemes for a tree-based k-means clustering method on shared memory machines. One scheme is to partition the pattern space across processors. We have determined that spatial decomposition of patterns outperforms random decomposition even though random decomposition has almost no load imbalance problem. The other scheme is the parallel traverse of the search tree. This approach solves the load imbalance problem and performs slightly better than the spatial decomposition, but the efficiency is reduced due to thread synchronizations. In both cases, parallel treebased k-means clustering is significantly faster than the direct parallel k-means. © Springer-Verlag Berlin Heidelberg 2001.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback