Browsing by Subject "Isotropic materials"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling(American Physical Society, 2012-11-29) Serebryannikov, A. E.; Alici, K. B.; Magath, T.; Cakmak, A. O.; Özbay, EkmelStrongly asymmetric Fabry-Perot-type transmission arising at the two-way coupling has been studied in the case of normal incidence for slabs of two-dimensional photonic crystals (PCs) with one-sided corrugations that are made of linear isotropic materials. Comparing to the scenario of unidirectional transmission known for the structures with broken spatial inversion symmetry that requires zero order being uncoupled, in the studied mechanism zero order is either the sole order or one of the orders that may be coupled to a Floquet-Bloch mode. Contrary to the earlier studies of asymmetric transmission at the coupled zero order, structures with nondeep corrugations are considered, which allow one to combine Fabry-Perot-type total-transmission maxima with diffractions in a desired way. At a proper choice of PC lattice and corrugation parameters, higher orders can dominate in Fabry-Perot-type transmission at the noncorrugated-side illumination and also at the total-transmission maxima, whereas only zero order contributes to the transmission at the corrugated-side illumination. As a result, strong asymmetry can be obtained without uncoupling of zero order but it invokes the unidirectional contribution of higher orders. The presented results show that the entire structure can be approximately decomposed into the two independent, regular and grating (nonregular), parts whose contributions to the transmission are additive. Multiple asymmetric transmission maxima can coexist with a rather high equivalent group index of refraction. Possible applications of the studied transmission mechanism are discussed.Item Open Access Dispersion irrelevant wideband asymmetric transmission in dielectric photonic crystal gratings(Optical Society of America, 2012-11-22) Serebryannikov, A. E.; Colak, E.; Cakmak, A. O.; Özbay, EkmelWideband suppression of zero order and relevant strongly asymmetric transmission can be obtained in photonic crystal gratings that are made of linear isotropic materials and show the broken structural (axial) symmetry, even if zero diffraction order may be coupled to a Floquet-Bloch (FB) wave at the incidence and exit interfaces. The studied mechanism requires that the peculiar diffractions at the corrugated exit interface inspire strong energy transfer to higher orders, including those not coupled to an FB wave. At the opposite direction of incidence, transmission due to zero and some higher orders that may be coupled at the corrugated input interface can vanish. This leads to the alternative scenario of wideband unidirectional transmission, which itself does not need but can coexist with the other scenario based on the merging of asymmetric diffraction and dispersion of the FB mode.Item Open Access Spatial filters based on EBG structures with anisotropic-like dispersion(IEEE, 2010) Serebryannikov, A.E.; Cakmak, A.O.; Çolak, Evrim; Özbay, EkmelBandpass and bandstop spatial filters based on the dielectric-rod EBG structures are proposed and validated for the frequency range from 18 to 25 GHz. The obtained experimental results are well consistent with the theoretical predictions. The exploited mechanism utilizes, in particular, anisotropic-like dispersion, which can occur in the conventional EBG structures made of isotropic materials.