Browsing by Subject "Iron oxides"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Amphiphilic peptide coated superparamagnetic iron oxide nanoparticles for in vivo MR tumor imaging(Royal Society of Chemistry, 2016) Ozdemir, A.; Ekiz, M. S.; Dilli, A.; Güler, Mustafa O.; Tekinay, A. B.Magnetic resonance imaging (MRI) is a noninvasive imaging technique that provides high spatial resolution and depth with pronounced soft-tissue contrast for in vivo imaging. A broad variety of strategies have been employed to enhance the diagnostic value of MRI and detect tissue abnormalities at an earlier stage. Superparamagnetic iron oxide nanoparticles (SPIONs) are considered to be suitable candidates for effective imaging due to their small size, versatile functionality and better biocompatibility. Here, we demonstrate that coating SPIONs with proline-rich amphiphilic peptide molecules through noncovalent interactions leads to a water-dispersed hybrid system suitable as an MRI contrast agent. Cellular viability and uptake of amphiphilic peptide coated SPIONs (SPION/K-PA) were evaluated with human vascular endothelial cells (HUVEC) and estrogen receptor (ER) positive human breast adenocarcinoma (MCF-7) cells. The efficiency of SPION/K-PA as MRI contrast agents was analyzed in Sprague-Dawley rats with mammary gland tumors. MR imaging showed that SPION/K-PA effectively accumulated in tumor tissues, enhancing their imaging potential. Although nanoparticles were observed in reticuloendothelial system organs (RES) and especially in the liver and kidney immediately after administration, the MR signal intensity in these organs diminished after 1 h and nanoparticles were subsequently cleared from these organs within two weeks. Histological observations also validated the accumulation of nanoparticles in tumor tissue at 4 h and their bioelimination from the organs of both healthy and tumor-bearing rats after two weeks.Item Open Access Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias(2010) Süzer, Şefik; Baer, D. R.; Engelhard, M. H.The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shell nanoparticles has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and analyzed after particles containing solutions were deposited on SiO2/Si or Au substrates. The particle and substrate combinations were subjected to ±10V d.c. or ±5V a.c., biasing in the form of square wave (SQW) pulses. The samples experienced variable degrees of charging for which low-energy electrons at ∼1eV, 20 μA and low-energy Ar+ ions were used to minimize it. Application of d.c. bias and/or SQW pulses significantly influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly, the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the solvent to which the particles were exposed. Hence, acetone exhibited the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses provides information about the time constants of the processes involved, which leads us to postulate that these charging properties we probe in these systems stem mainly from ionic movement(s).Item Open Access The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers(Elsevier Ltd, 2015) George Philip G.; Senthamizhan, A.; Srinivasan Natarajan, T.; Chandrasekaran G.; Annal Therese H.Gadolinium (Gd) doped Bismuth ferrite (BFO) nanofibers (Bi1-xGdxFeO3 (x=0.0, 0.05, 0.10, 0.15 and 0.20)) were synthesized via electrospinning. Scanning Electron Microscope (SEM) analysis showed that the diameter of the nanofibers ranged from 150 to 250 nm. X-Ray Diffraction (XRD) analysis revealed a structural phase transition with varying 'x', the compositions with x≤0.10 have crystal structures with space group R3c, while the compositions with x > 0.10 have crystal structures with space group Pnma. Vibrating Sample Magnetometer (VSM) analysis exhibited the weak ferromagnetic nature of the BFO nanofibers. However an increase in the saturated magnetic moment with increase in Gd dopant concentration was observed. The Photoluminescence (PL) spectra of the Bi:1-x :x nanofibers show enhanced Near Band Emission (NBE) intensity at x=0.10 due to the passivation of oxygen vacancies by Gd doping. © 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.Item Open Access Fe promoted NOx storage materials: structural properties and NOx uptake(American Chemical Society, 2010) Kayhan, E.; Andonova, S. M.; Şentürk, G. S.; Chusuei, C. C.; Ozensoy, E.Fe promoted NOx storage materials were synthesized in the form of FeOx/BaO/Al2O3 ternary oxides with varying BaO (8 and 20 wt %) and Fe (5 and 10 wt %) contents. Synthesized NOx storage materials were investigated via TEM, EELS, BET, FTIR, TPD, XRD, XPS, and Raman spectroscopy, and the results were compared with the conventional BaO/Al2O3 NOx storage system. Our results suggest that the introduction of Fe in the BaO/Al2O3 system leads to the formation of additional NOx storage sites which store NOx mostly in the form of bidentate nitrates. NO2 adsorption experiments at 323 K via FTIR indicate that, particularly in the early stages of the NOx uptake, the NOx storage mechanism is significantly altered in the presence of Fe sites where a set of new surface nitrosyl and nitrite groups were detected on the Fe sites and the surface oxidation of nitrites to nitrates is significantly hindered with respect to the BaO/Al2O3 system. Evidence for the existence of both Fe3+ as well as reduced Fe2+/(3-x)+ sites on the freshly pretreated materials was detected via EELS, FTIR, Raman, and XRD experiments. The influence of the Fe sites on the structural properties of the synthesized materials was also studied by performing ex situ annealing protocols within 323-1273 K followed by XRD and Raman experiments where the temperature dependent changes in the morphology and the composition of the surface domains were analyzed in detail. On the basis of the TPD data, it was found that the relative stability of the stored NOx species is influenced by the morphology of the Ba and Fe containing NOx-storage domains. The relative stabilities of the investigated NOx species were found to increase in the following order: N2O3/NO+ < nitrates on γ-Al2O3 < surface nitrates on BaO < bidentate nitrates on FeOx sites < bulk nitrates on BaO.Item Open Access Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1–T2 MRI contrast agents(Royal Society of Chemistry, 2015) Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, Hilmi VolkanWe report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 ± 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI. © 2014 The Royal Society of Chemistry.Item Open Access Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents(The Royal Society of Chemistry, 2011) Sulek, S.; Mammadov, B.; Mahcicek, D. I.; Sozeri, H.; Atalar, Ergin; Tekinay, A. B.; Güler, Mustafa O.Magnetic resonance imaging (MRI) attracts great attention in cellular and molecular imaging due to its non-invasive and multidimensional tomographic capabilities. Development of new contrast agents is necessary to enhance the MRI signal in tissues of interest. Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents for signal enhancement as they have revealed extraordinary magnetic properties at the nanometre size and their toxicity level is very low compared to other commercial contrast agents. In this study, we developed a new method to functionalize the surface of SPIONs. Peptide amphiphile molecules are used to coat SPIONs non-covalently to provide water solubility and to enhance biocompatibility. Superparamagnetic properties of the peptide-SPION complexes and their ability as contrast agents are demonstrated. In vitro cell culture experiments reveal that the peptide-SPION complexes are biocompatible and are localized around the cells due to their peptide coating.Item Open Access Transmission Near-Field Scanning Optical Microscopy Investigation on Cellular Uptake Behavior of Iron Oxide Nanoparticles(2012) Zhang, Y.; Kyle J.R.; Penchev, M.; Yazdanpanah V.; Yu J.; Li, Y.; Yang, M.; Budak G.; Özbay, Ekmel; Ozkan, M.; Ozkan, C.S.Cellular uptake behavior of iron oxide nanoparticles is investigated using a transmission near-field scanning optical microscopy (NSOM) without the need of fluorescent labeling. By using the transmission NSOM system, we could simultaneously explore the near-field optical analysis of the cell interior and record the topographic information of the cell surface. The cell endocytosis of iron oxide nanoparticles by normal breast MCF10A cells is first studied by this transmission NSOM system, and this dual functional nanoscale-resolution microscopy shows the capability of mapping the spatial localization of nanoparticles in/outside cell surface without the need of fluorescence labeling. Nanoscale optical signature patterns for iron oxide nanoparticle-loaded vesicles inside the cells were observed and analyzed. © Springer Science+Business Media, LLC 2012.