Browsing by Subject "Interferometers"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Coherent and incoherent transport through T-shaped double quantum dots(Elsevier B.V., 2008) Moldoveanu, V.; Ţolea, M.; Tanatar, BilalWe investigate the measurement induced dephasing of the Fano effect in the electronic transport through a double quantum dot mesoscopic interferometer coupled to a charge detector. The current and the differential conductance are computed within the Keldysh formalism, taking into account of the inelastic processes due to the dot-detector interaction. We show that the visibility of the Fano lineshape is reduced by applying a finite bias on the charge detector.Item Open Access Electronic transmittance phase extracted from mesoscopic interferometers(2012) Tolea, M.; Moldoveanu V.; Dinu I.V.; Tanatar, BilalThe usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called 'open' interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in 'closed' interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the 'bare' QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a π lapse. Therefore, closed mesoscopic interferometers can be used to address the 'universal phase lapse' problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses. © 2012 Tolea et al.Item Open Access Fano effect in a double T-shaped interferometer(Springer, 2009) Moldoveanu, V.; Dinu, I. V.; Tanatar, BilalWe study the coherent transport in a one-dimensional lead with two side-coupled quantum dots using the Keldysh's Green function formalism.The effect of the interdot Coulomb interaction is taken into account by computing the firstand second order contributions to the self-energy.We show that the Fano interference due to the resonance of one dotis strongly affected by the fixed parameters that characterize the second dot. If the second dot is tuned close to resonance an additionalpeak develops between the peak and dip of the Fano line shape of the current. In contrast, when the second dotis off-resonance and its occupation number is close to unity the interdot Coulomb interaction merely shifts the Fano line and no other maxima appear.The system we consider is more general than the single-dot interferometer studied experimentally by Kobayashi et al. [Phys. Rev. B 70, 035319 (2004)] and may be used for controlling quantum interference and studying decoherence effects in mesoscopic transport.Item Open Access Interdigital cantilevers for atomic force microscopy(A I P Publishing LLC, 1996-10) Manalis, S. R.; Minne, S. C.; Atalar, Abdullah; Quate, C. F.We present a sensor for the atomic force microscope (AFM) where a silicon cantilever is micromachined into the shape of interdigitated fingers that form a diffraction grating. When detecting a force, alternating fingers are displaced while remaining fingers are held fixed. This creates a phase sensitive diffraction grating, allowing the cantilever displacement to be determined by measuring the intensity of diffracted modes. This cantilever can be used with a standard AFM without modification while achieving the sensitivity of the interferometer and maintaining the simplicity of the optical lever. Since optical interference occurs between alternating fingers that are fabricated on the cantilever, laser intensity rather than position can be measured by crudely positioning a photodiode. We estimate that the rms noise of this sensor in a 10 hz–1 kHz bandwidth is ∼0.02 Å and present images of graphite with atomic resolution.