Browsing by Subject "Interconnection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The complex structure of the anterior white commissure of the human brain: Fiber dissection and tractography study(Elsevier Inc., 2021-03) Çavdar, S.; Aydın, A. E.; Algın, Oktay; Aydın, S.Objective Commissural fibers are necessary for bilateral integration, body coordination, and complex cognitive information flow between the hemispheres. The anterior commissure (AC) has a complex architecture interconnecting areas of the frontal, temporal and occipital lobes. The present study aims to demonstrate the connections and the course of the anterior (ACa) and posterior (ACp) limb of the AC using fiber dissection and diffusion tensor imaging (DTI) of the human brain. Methods Fiber dissection was performed in a stepwise manner from lateral to medial on 6 left hemispheres. The gray matter was decorticated and the ACa–ACp was exposed. The ACa and ACp tracts were demonstrated using a high-spatial-resolution DTI with a 3T magnetic resonance unit in 13 cases. Results Using both techniques showed that the AC has complex interconnections with large areas of the frontal (olfactory tubercles, anterior olfactory nucleus, olfactory bulb, and the orbital gyri), temporal (amygdaloidal nuclei, temporal and perirhinal cortex), and occipital (visual cortex) lobes. The ACp makes up the major component of the AC and is composed of temporal and occipital fibers. We observed that these fibers do not make a distinct bundle; the temporal fibers joined the uncinate fasciculus and the occipital fibers joined the sagittal striatum to reach their targets. Conclusions Being aware of the course of the AC is important during transcallosal and interforniceal approaches to the third ventricle tumors and temporal lobe epilepsy surgery. The intermingling fibers of the AC can provide a better understanding of the unexplained deficit that may occur during regional surgery.Item Open Access Information flow and interconnections in computing: extensions and applications of Rent's rule(Elsevier, 2004) Özaktaş, Haldun M.Rent’s rule and related concepts of connectivity such as dimensionality, line-length distributions, and separators are discussed. Generalizations for systems for which the Rent exponent is not constant throughout the interconnection hierarchy are provided. The origin of Rent’s rule is stressed as resulting from the embedding of a high-dimensional information flow graph to two- or three-dimensional physical space. The applicability of these concepts to free-space optically interconnected systems is discussed. The role of Rent’s rule in fundamental studies of different interconnection media, including superconductors and optics, is briefly reviewed.