Browsing by Subject "Intelligent control"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Multiple-resampling receiver design for OFDM over Doppler-distorted underwater acoustic channels(2013) Tu, K.; Duman, T. M.; Stojanovic, M.; Proakis J. G.In this paper, we focus on orthogonal frequency-division multiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user-and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of front-end resampling that corrects for common Doppler scaling may not be appropriate in such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user-and/or path-specific intercarrier interference. To counteract this problem, we propose a family of front-end receiver structures that utilize multiple-resampling (MR) branches, each matched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradient-descent approach is also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Martha's Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment.Item Open Access Sensitivity reduction by strongly stabilizing controllers for MIMO distributed parameter systems(Institute of Electrical and Electronics Engineers, 2011-12-09) Wakaiki, M.; Yamamoto, Y.; Özbay, HitayThis note investigates a sensitivity reduction problem by stable stabilizing controllers for a linear time-invariant multi-input multioutput distributed parameter system. The plant we consider has finitely many unstable zeros, which are simple and blocking, but can possess infinitely many unstable poles. We obtain a necessary condition and a sufficient condition for the solvability of the problem, using the matrix Nevanlinna-Pick interpolation with boundary conditions. We also develop a necessary and sufficient condition for the solvability of the interpolation problem, and show an algorithm to obtain the solutions. Our method to solve the interpolation problem is based on the Schur-Nevanlinna algorithm.Item Open Access Tangential Nevanlinna-Pick interpolation for strong stabilization of MIMO distributed parameter systems(IEEE, 2012-12) Wakaiki, M.; Yamamoto, Y.; Özbay, HitayWe study the problem of finding stable controllers that stabilize a multi-input multi-output distributed parameter system while simultaneously reducing the sensitivity of the system. The plants we consider have finitely many unstable transmission zeros, but they can possess infinitely many unstable poles. Using the tangential Nevanlinna-Pick interpolation with boundary conditions, we obtain both upper and lower bounds of the minimum sensitivity that can be achieved by stable controllers. We also derive a method to find stable controllers for sensitivity reduction. In addition, we apply the proposed method to a repetitive control system. © 2012 IEEE.