Browsing by Subject "Intelligent agents"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A game theoretical modeling and simulation framework for the integration of unmanned aircraft systems in to the national airspace(AIAA, 2016) Musavi, Negin; Tekelioğlu, K. B.; Yıldız, Yıldıray; Güneş, Kerem; Onural, DenizThe focus of this paper is to present a game theoretical modeling and simulation frame- work for the integration of Unmanned Aircraft Systems (UAS) into the National Airspace system (NAS). The problem of predicting the outcome of complex scenarios, where UAS and manned air vehicles co-exist, is the research problem of this work. The fundamental gap in the literature in terms of developing models for UAS integration into NAS is that the models of interaction between manned and unmanned vehicles are insufficient. These models are insufficient because a) they assume that human behavior is known a priori and b) they disregard human reaction and decision making process. The contribution of this paper is proposing a realistic modeling and simulation framework that will fill this gap in the literature. The foundations of the proposed modeling method is formed by game theory, which analyzes strategic decision making between intelligent agents, bounded rationality concept, which is based on the fact that humans cannot always make perfect decisions, and reinforcement learning, which is shown to be effective in human behavior in psychology literature. These concepts are used to develop a simulator which can be used to obtain the outcomes of scenarios consisting of UAS, manned vehicles, automation and their interactions. An analysis of the UAS integration is done with a specifically designed scenario for this paper. In the scenario, a UAS equipped with sense and avoid algorithm, moves along a predefined trajectory in a crowded airspace. Then the effect of various system parameters on the safety and performance of the overall system is investigated.Item Open Access Human activity classification with miniature inertial and magnetic sensor signals(IEEE, 2011) Yüksek, Murat Cihan; Barshan, BillurThis study provides a comparative performance assessment of various pattern recognition techniques on classifying human activities that are performed while wearing miniature inertial and magnetic sensors. Activities are classified using five sensor units worn on the chest, the arms, and the legs. Each sensor unit comprises a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. The classification techniques compared in this study are: naïve Bayesian (NB), artificial neural networks (ANN), dissimilaritybased classifier (DBC), various decision-tree algorithms, Gaussian mixture model (GMM), and support vector machines (SVM). The methods that result in the highest correct differentiation rates are found to be GMM (99.1%), ANN (99.0%), and SVM (98.9%). © 2011 EURASIP.Item Open Access Human activity recognition using inertial/magnetic sensor units(Springer, Berlin, Heidelberg, 2010) Altun, Kerem; Barshan, BillurThis paper provides a comparative study on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), the least-squares method (LSM), the k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). Daily and sports activities are classified using five sensor units worn by eight subjects on the chest, the arms, and the legs. Each sensor unit comprises a triaxial gyroscope, a triaxial accelerometer, and a triaxial magnetometer. Principal component analysis (PCA) and sequential forward feature selection (SFFS) methods are employed for feature reduction. For a small number of features, SFFS demonstrates better performance and should be preferable especially in real-time applications. The classifiers are validated using different cross-validation techniques. Among the different classifiers we have considered, BDM results in the highest correct classification rate with relatively small computational cost. © 2010 Springer-Verlag Berlin Heidelberg.Item Open Access Minyatür eylemsizlik duyucuları ve manyetometre sinyallerinin işlenmesiyle insan aktivitelerinin sınıflandırılması(IEEE, 2011-04) Yüksek, Murat Cihan; Barshan, BillurBu çalışmada insan vücuduna yerleştirilen minyatür eylemsizlik duyucuları ve manyetometreler kullanılarak çeşitli aktiviteler örüntü tanıma yöntemleriyle ayırdedilmiş ve karşılaştırmalı bir çalışmanın sonuçları sunulmuştur. Ayırdetme işlemi için basit Bayeşçi (BB) yöntem, yapay sinir ağları (YSA), benzeşmezlik tabanlı sınıflandırıcı (BTS), ceşitli karar ağacı (KA) yöntemleri, Gauss karışım modeli (GKM) ve destek vektör makinaları (DVM) kullanılmıştır. Aktiviteler gövdeye, kollara ve bacaklara takılan beş duyucu ünitesinden gelen verilerin işlenmesiyle ayırdedilmiştir. Her ünite, her biri üç-eksenli olmak üzere birer ivmeölçer, dönüölçer ve manyetometre içermektedir. Çalışmanın sonuçlarına göre, en iyi ilk üç başarı oranı sırasıyla GKM (%99.12), YSA (%99.09) ve DVM (%98.90) yöntemleri ile elde edilmiştir.