Browsing by Subject "Intellectual disability"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access DeepND: Deep multitask learning of gene risk for comorbid neurodevelopmental disorders(Cell Press, 2022-07-08) Beyreli, İlayda; Karakahya, Oğuzhan; Çiçek, A. ErcümentAutism spectrum disorder and intellectual disability are comorbid neurodevelopmental disorders with complex genetic architectures. Despite large-scale sequencing studies, only a fraction of the risk genes was identified for both. We present a network-based gene risk prioritization algorithm, DeepND, that performs cross-disorder analysis to improve prediction by exploiting the comorbidity of autism spectrum disorder (ASD) and intellectual disability (ID) via multitask learning. Our model leverages information from human brain gene co-expression networks using graph convolutional networks, learning which spatiotemporal neurodevelopmental windows are important for disorder etiologies and improving the state-of-the-art prediction in single- and cross-disorder settings. DeepND identifies the prefrontal and motor-somatosensory cortex (PFC-MFC) brain region and periods from early- to mid-fetal and from early childhood to young adulthood as the highest neurodevelopmental risk windows for ASD and ID. We investigate ASD- and ID-associated copy-number variation (CNV) regions and report our findings for several susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders. © 2022 The Author(s)Item Open Access Multitask learning of gene risk for autism spectrum disorder and intellectual disability(2020-10) Beyreli, İlaydaAutism Spectrum Disorder (ASD) and Intellectual Disability (ID) are comorbid neurodevelopmental disorders with complex genetic architectures. Despite largescale sequencing studies only a fraction of the risk genes were identified for both. Here, we present a novel network-based gene risk prioritization algorithm named DeepND that performs cross-disorder analysis to improve prediction power by exploiting the comorbidity of ASD and ID via multitask learning. Our model leverages information from gene co-expression networks that model human brain development using graph convolutional neural networks and learns which spatiotemporal neurodevelopmental windows are important for disorder etiologies. We show that our approach substantially improves the state-of-the-art prediction power. We observe that both disorders are enriched in transcription regulators. Despite tight regulatory links in between ASD risk genes, such is lacking across ASD and ID risk genes or within ID risk genes. Finally, we investigate frequent ASD and ID associated copy number variation regions and confident false findings to suggest several novel susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders.