Browsing by Subject "Infrared absorption"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Bio-insprired optoelectronic digital nose for breath analysis(2011) Bayındır, Mehmet; Yıldırım, Adem; Yaman, Mecit; Vural, MertA novel electronic nose device is presented that can be used in disease diagnostics by exhaled breath analysis. Exhaled breath contains more than a thousand organic compounds that can be analysed to insect various diseases and metabolic activity. The novel device is an electronic nose, based on photonic bandgap fibers that can selectively guide infrared radition inside a hollow core plastic fiber. Instead of a laser line source, a broadband balackbody source is used that exploits the filtering/ guiding properties of the fibers to scan the whole mid-infrared region, making it high selectivity of volatile organic compounds possible. In addition waveguiding inside the fiber enhances the electromagnetic radiation intensity, resulting in improved infrared absorption cross-section. The fiber electronic nose can be integrated and deployed as a portable electronics device to point-of-care institutes.Item Open Access Investigation of bias current and modulation frequency dependences of detectivity of YBCO TES and the effects of coating of Cu-C composite absorber layer(2009) Moftakharzadeh, A.; Kokabi, A.; Bozbey, A.; Ghodselahi, T.; Vesaghi, M.A.; Khorasani, S.; Banzet, M.; Schubert J.; Fardmanesh, M.Bolometric response and noise characteristics of YBCO superconductor transition edge IR detectors with relatively sharp transition and its resulting detectivity are investigated both theoretically and experimentally. The magnitude of response of a fabricated device was obtained for different bias currents and modulation frequencies. Using the measured and calculated bolometric response and noise characteristics, we found and analyzed the device detectivity versus frequency for different bias currents. The detectivity versus chopping frequency of the device did not decrease following the response strongly, due to the decrease of the noise at higher frequencies up to 1 kHz, resulting in maximum detectivity around the modulation frequency of 100 Hz. We also improved the responsivity of the device through the increase of the surface absorption by using a novel infrared absorber, which is made of a copper-carbon composite, coated in a low-temperature process. Within the modulation frequency range studied in this paper, comparison of device detectivity before and after coating is also presented. © 2009 IEEE.Item Open Access Universal infrared absorption spectroscopy using uniform electromagnetic enhancement(American Chemical Society, 2016) Ayas S.; Bakan, G.; Ozgur E.; Celebi, K.; Dana, A.Infrared absorption spectroscopy has greatly benefited from the electromagnetic field enhancement offered by plasmonic surfaces. However, because of the localized nature of plasmonic fields, such field enhancements are limited to nanometer-scale volumes. Here, we demonstrate that a relatively small, but spatially uniform field enhancement can yield a superior infrared detection performance compared to the plasmonic field enhancement exhibited by optimized infrared nanoantennas. A specifically designed CaF2/Al thin film surface is shown to enable observation of stronger vibrational signals from the probe material, with wider bandwidth and a deeper spatial extent of the field enhancement as compared to such plasmonic surfaces. It is demonstrated that the surface structure presented here can enable chemically specific and label-free detection of organic monolayers using surface-enhanced infrared spectroscopy, indicating a great potential in highly sensitive yet cost-effective biomolecular sensing applications.