Browsing by Subject "Inductive power transmission"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access All-surface induction heating with high efficiency and space invariance enabled by arraying squircle coils in square lattice(Institute of Electrical and Electronics Engineers, 2018) Kılıç, Veli Tayfun; Ünal, Emre; Yilmaz, N.; Demir, Hilmi VolkanThis paper reports an all-surface induction heating system that enables efficient heating at a constant speed all over the surface independent of the specific location on the surface. In the proposed induction system, squircle coils are placed tangentially in a two-dimensional square lattice as opposed to commonly used hexagonal packing. As a proof-of-concept demonstration, a simple model setup was constructed using a 3 × 3 coil array along with a steel plate to be inductively heated. To model surface heating, a set of six locations for the plate was designated considering symmetry points. For all of these cases, power dissipated by the system and the plate's transient heating were recorded. Independent from the specific plate position, almost equal heating speeds were measured for the similar levels of dissipated energies in the system. Using full three-dimensional electromagnetic solutions, the experimental results were also verified. The findings indicate that the proposed system is proved to enable energy efficient space-invariant heating in all-surface induction hobs.Item Open Access Innovative modular and arrayed coil systems for ultrahigh efficiency in inductive heating and automated metal detection(2016-12) Kılıç, Veli TayfunInduction systems have become increasingly more important and popular in our modern world and their application areas have widely expanded because of their high levels of safety and controllability. Today one important application of these induction systems is the inductive heating, which now finds use not only in conventional applications of point-source heating but also in new areas including all-surface heating with some degree of exibility in localization. The efficiency of such emerging systems, especially in planar structures across an entire surface, however, has thus far been limited compared to conventional inductive heating. In this thesis, to address these problems, we show a new class of strongly coupled planar coils that enhance magnetic coupling in square lattice stacking by design and with phase difference application in operation. These coils can be tiled in two-dimensional arrays in a modular fashion or to cover an arbitrarily large continuous surface. In a proof-of-concept realization, we experimentally demonstrated that these proposed outer squircle-inner circular coils outperform the conventional coils of circular shape. Using square-arrayed coil architecture, here we also present all-surface induction systems achieving uniform and enhanced heating speed for all loading positions no matter what the misalignment of the heated vessel with respect to the coils is. In addition, to solve the problems of automatically detecting metals over the whole surface together with determining their exact positions, we introduce a new method that relies on simultaneous wireless measurement and tracking of inductance-resistance of the coils at multiple frequencies to identify those coupled with the metal targets to be detected in the system. While pinpointing the location of the targeted metals, the proposed technique also identifies their material types. For future ubiquitous all-surface systems, this approach allows for automated sensing of metal vessels and powering the loaded coils for the highest possible performance independent of the specific location of each vessel with respect to coils. These findings indicate that the proposed innovative modular and arrayed coils enable, for the first time, full degree of exibility in localized inductive heating with space-invariance in all-surface heating.Item Open Access Strongly coupled outer squircle-inner circular coil architecture for enhanced induction over large areas(Institute of Electrical and Electronics Engineers Inc., 2016) Kilic V.T.; Unal, E.; Gonendik, E.; Yilmaz, N.; Demir, Hilmi VolkanThis paper reports a newly designed class of strongly coupled planar coil structures for the purpose of enhanced induction over large areas. These new architectures feature a squircle shape at the outer rim with rounded corners and straight sides evolved into a fully circular shape in the inner side, which proves to be essential to achieve high efficiency in arrays and all-surface inductive heating. As a proof-of-demonstration, a simple inductive heating system composed of a pair of side-by-side placed coils was constructed together with a ferrite layer. Experiments were repeated for 0° and 180° phase differences between coil currents. Here, the system efficiency was shown to be increased overall by 37.4% using outer squircle-inner circular coils instead of conventional circular coils. This comparative study indicates that the proposed coil architecture offers the potential for large-area, fast, and phase-insensitive inductive heating with high efficiency.