Browsing by Subject "Indium phosphide"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes(Wiley-VCH Verlag, 2012-04-30) Yang, X.; Zhao, D.; Leck K.S.; Tan S.T.; Tang, Y. X.; Zhao, J.; Demir, Hilmi Volkan; Sun, X. W.High-quality InP/ZnS core–shell nanocrystals with luminescence tunable over the entire visible spectrum have been achieved by a facile one-pot solvothermal method. These nanocrystals exhibit high quantum yields (above 60%), wide emission spectrum tunability and excellent photostability. The FWHM can be as narrow as 38 nm, which is close to that of CdSe nanocrystals. Also, making use of these nanocrystals, we further demonstrated a cadmium-free white QD-LED with a high color rendering index of 91. The high-performance of the resulting InP/ZnS NCs coupled with their low intrinsic toxicity may further promote industrial applications of these NC emitters.Item Open Access High-quality InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes(IEEE, 2012) Yang, X.; Tan, S. T.; Demir, Hilmi Volkan; Sun, X. W.Full visible range covering InP/ZnS core-shell nanocrystals with high photometric performance have been prepared. Making use of these nanocrystals, we demonstrate a white quantum dot LED with a high color rendering index of 91. © 2012 IEEE.Item Open Access Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons(Frontiers Media S.A., 2021-06-23) Karatum, O.; Aria, M. M.; Eren, G. Ö.; Yıldız, E.; Melikov, R.; Srivastava, S. B.; Sürme, S.; Bakış Doğru, I.; Jalali, H. B.; Ulgut, Burak; Şahin, A.; Kavaklı, İ. H.; Nizamoğlu, S.Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.