Browsing by Subject "In-network processing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Rule-based in-network processing in wireless sensor networks(IEEE, 2009-07) Şanlı, Ö.; Körpeoğlu, İbrahim; Yazıcı, A.Wireless sensor networks are application-specific networks, and usually a new network design is required for a new application. In event-driven wireless sensor network applications, the sink node of the network is generally concerned with the higher level information describing the events happening in the network, not the raw sensor data of individual sensor nodes. As the communication is a costly operation in wireless sensor networks, it is important to process the raw data triggering the events inside the network instead of bringing the raw data to the sink and processing it there. This helps reducing the total amount of packets transmitted and total energy consumed in the network. In this paper, we propose a new method that distributes the information processing into the sensor network for event-driven applications. We also describe an application scenario, healthcare monitoring application, that can benefit from our approach. © 2009 IEEE.Item Open Access Rule-based inference and decomposition for distributed in-network processing in wireless sensor networks(Springer, 2017) Sanli, O.; Korpeoglu, I.; Yazici, A.Wireless sensor networks are application specific and necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. A common type of application for wireless sensor networks is the event-driven reactive application, which requires reactive actions to be taken in response to events. In such applications, the interest is in the higher-level information described by complex event patterns, not in the raw sensory data of individual nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a continuous flow of raw sensor readings over the network. As communication operations are the most expensive in terms of energy usage, the distributed processing of information is indispensable for viable deployments of applications in wireless sensor networks. This method not only helps in reducing the total amount of packets transmitted in the network and the total energy consumed by the sensor nodes, but also produces scalable and fault-tolerant networks. For this purpose, we present two schemes that distribute information processing to appropriate nodes in the network. These schemes use reactive rules, which express relations between event patterns and actions, in order to capture reactive behavior. We also share the results of the performance of our algorithms and the simulations based on our approach that show the success of our methods in decreasing network traffic while still realizing the desired functionality. © 2016, Springer-Verlag London.