BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "In-memory computing"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Learning and inference for wireless communications applications using in-memory analog computing
    (2024-07) Ali, Muhammad Atif
    The exponential growth of wireless communication technologies has created a crucial need for more efficient and intelligent signal processing in decentralized devices and systems. Traditional digital computing architectures increasingly struggle to meet these rising computational demands, leading to performance bottlenecks and energy inefficiencies. The problem becomes more significant on edge devices with limited computing capabilities and severe energy limitations. Integrating machine learning algorithms with in-memory analog computing, specifically memristor-based architectures, provides a non-traditional computing paradigm and can potentially enhance the energy efficiency of edge devices. By leveraging the properties of memristors, which can perform both storage and computation, this research investigates ways to potentially reduce latency and power consumption in signal-processing tasks for wireless communications. This study examines memristor-based analog computing for deep learning and inference in three areas of (wireless) communications: cellular network traffic prediction, multi-sensor over-the-air inference for internet-of-things devices, and neural successive cancellation decoding for polar codes. The research includes the development of robust training techniques for memristive neural networks to cater for degraded performance due to noise in analog computations and offer acceptable prediction accuracy with reduced computational overhead for network traffic management. It explores in-memory computing for an Lp-norm inspired sensor fusion method with analog sensors and enables more efficient multi-sensor data fusion. Also, it investigates the incorporation of analog memristive computing in neural successive cancellation decoders for polar codes, which could lead to more energy-efficient decoding algorithms. The findings of the thesis suggest potential improvements in energy efficiency and provide insights into the benefits and limitations of using in-memory computing for wireless communication applications.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback