Browsing by Subject "Impurity free vacancy disordering"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers(Institute of Physics Publishing, 2018) Arslan, Seval; Demir, Abdullah; Şahin, S.; Aydınlı, A.In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.Item Open Access IFVD-based large intermixing selectivity window process for high power laser diodes(SPIE, 2018) Arslan, Seval; Şahin, S.; Demir, Abdullah; Aydınlı, A.Catastrophic optical mirror damage (COMD) is a key issue in semiconductor lasers and it is initiated by facet heating because of optical absorption. To reduce optical absorption, the most promising method is to form non-absorbing mirror structures at the facets by obtaining larger bandgap through impurity-free vacancy disordering (IFVD). To apply an IFVD process while fabricating high-power laser diodes, intermixing window and intermixing suppression regions are needed. Increasing the bandgap difference (ΔE) between these regions improves the laser lifetime. In this report, SrF2 (versus SixO2/SrF2 bilayer) and SiO2 dielectric films are used to suppress and enhance the intermixing, respectively. However, defects are formed during the annealing process of single layer SrF2 causing detrimental effects on the semiconductor laser performance. As an alternative method, SixO2/SrF2 bilayer films with a thin SixO2 dielectric layer is employed to obtain high epitaxial quality during annealing with small penalty on the suppression effect. We demonstrate record large ΔE of 125 meV. Broad area laser diodes were fabricated by the IFVD process. Fabricated high-power semiconductor lasers demonstrated conservation of quantum efficiency with high intermixing selectivity. The differential quantum efficiencies are 81%, 74%, 66% and 46% for as grown, bilayer protected, SrF2 protected and QWI lasers, respectively. High power laser diodes using bilayer dielectric films outperformed single-layer based approach in terms of the fundamental operational parameters of lasers. Comparable results obtained for the as-grown and annealed bilayer protected lasers promises a novel method to fabricate high power laser diodes with superior performance and reliability.