Browsing by Subject "Impulse noise"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Denoising images corrupted by impulsive noise using projections onto the epigraph set of the total variation function (PES-TV)(Springer U K, 2015) Tofighi M.; Kose, K.; Çetin, A. EnisIn this article, a novel algorithm for denoising images corrupted by impulsive noise is presented. Impulsive noise generates pixels whose gray level values are not consistent with the neighboring pixels. The proposed denoising algorithm is a two-step procedure. In the first step, image denoising is formulated as a convex optimization problem, whose constraints are defined as limitations on local variations between neighboring pixels. We use Projections onto the Epigraph Set of the TV function (PES-TV) to solve this problem. Unlike other approaches in the literature, the PES-TV method does not require any prior information about the noise variance. It is only capable of utilizing local relations among pixels and does not fully take advantage of correlations between spatially distant areas of an image with similar appearance. In the second step, a Wiener filtering approach is cascaded to the PES-TV-based method to take advantage of global correlations in an image. In this step, the image is first divided into blocks and those with similar content are jointly denoised using a 3D Wiener filter. The denoising performance of the proposed two-step method was compared against three state-of-the-art denoising methods under various impulsive noise models.Item Open Access Performance analysis of turbo codes over Nakagami-m fading channels with impulsive noise(IEEE, 2007) Ali, Syed Amjad; İnce, E. A.The statistical characteristics of impulsive noise differ greatly from those of Gaussian noise. Hence, the performance of conventional decoders, optimized for AWGN channels is not promising in non-Gaussian environments. In order to achieve improved performance in impulsive environments the decoder structure needs to be adapted in accordance with the impulsive noise model. This paper provides performance analysis of turbo codes over fully interleaved Nakagami-m fading channels with Middleton's additive white Class-A impulsive noise (MAWCAIN). Simulation results for memoryless Nakagami-m fading channels under coherent BPSK signaling are provided for the cases of ideal channel state information (ICSI) and no channel state information (NCSI) at the decoder. As in the 3GPP UMTS forward link an eight state turbo encoder having (1, 13/15, 13/15) generator polynomial is used throughout the analysis. The novelty of this work lies in the fact that this is an initial attempt to provide a detailed analysis of turbo codes over Nakagami-m fading channels with impulsive noise rather than fading channels with AWGN. © 2007 IEEE.Item Open Access Performance analysis of turbo codes over Rician fading channels with impulsive noise(IEEE, 2007) Ali, Syed Amjad; Ince, E.A.The statistical characteristics of impulsive noise differ greatly from those of Gaussian noise. Hence, the performance of conventional decoders, optimized for additive white Gaussian noise (AWGN) channels is not promising in non-Gaussian environments. In order to achieve improved performance in impulsive environments the decoder structure needs to be modified in accordance with the impulsive noise model. This paper provides performance analysis of turbo codes over fully interleaved Rician fading channels with Middleton's additive white Class-A impulsive noise (MAWCAIN). Simulation results for the memoryless Rician fading channels using coherent BPSK signaling for both the cases of ideal channel state information (ICSI) and no channel state information (NCSI) at the decoder are provided. An eight state turbo encoder having (1, 13/15, 13/15) generator polynomial is used throughout the analysis. The novelty of this work lies in the fact that this is an initial attempt to provide a detailed analysis of turbo codes over Rician fading channels with impulsive noise rather than AWGN. ©2007 IEEE.Item Open Access Theoretical limits and a practical estimator for joint estimation of respiration and heartbeat rates using UWB impulse radio(IEEE, 2007) Gezici, Sinan; Arıkan, OrhanIn this paper, Cramer-Rao lower bounds are derived fo r joint estimation of respiration and heartbeat rates via impulse radio ultra-wideband signals. Generic models are employed for displacement functions due to respiration and heartbeat, and the bounds are obtained for the cases of known and unknown channel coefficients. In addition, a two-step suboptimal estimator is proposed, which is based on joint time-delay estimation followed by a least-squares approach. It is shown that the proposed estimator is asymptotically optimal under mild conditions. Simulation studies are performed to evaluate the lower bounds and performance of the proposed estimator for realistic system parameters.