Browsing by Subject "Image sensors"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access High‐speed atomic force microscopy using an integrated actuator and optical lever detection(A I P Publishing LLC, 1996-09) Manalis, S. R.; Minne, S. C.; Atalar, Abdullah; Quate, C. F.A new procedure for high‐speed imaging with the atomic force microscope that combines an integrated ZnO piezoelectric actuator with an optical lever sensor has yielded an imaging bandwidth of 33 kHz. This bandwidth is primarily limited by a mechanical resonance of 77 kHz when the cantilever is placed in contact with a surface. Images scanned with a tip velocity of 1 cm/s have been obtained in the constant force mode by using the optical lever to measure the cantilever stress. This is accomplished by subtracting an unwanted deflection produced by the actuator from the net deflection measured by the photodiode using a linear correction circuit. We have verified that the tip/sample force is constant by monitoring the cantilever stress with an implanted piezoresistor.Item Open Access Map building with multiple range measurements using morphological surface profile extraction(IEEE, Piscataway, NJ, United States, 1999) Barshan, B.; Başkent, D.A novel method is described for surface profile extraction based on morphological processing of multiple range sensor data. The approach taken is extremely flexible and robust, in addition to being simple and straightforward. It can deal with arbitrary numbers and configurations of range sensors as well as synthetic arrays. The method has the intrinsic ability to suppress spurious readings, crosstalk, and higher-order reflections, and process multiple reflections informatively. The essential idea of this work - the use of multiple range sensors combined with morphological processing - can be applied to different physical modalities of range sensing of vastly different scales and in many different areas. These may include radar, sonar, robotics, optical sensing and metrology, remote sensing, ocean surface exploration, geophysical exploration, and acoustic microscopy.Item Open Access Resolution enhancement of low resolution wavefields with POCS algorithm(The Institution of Engineering and Technology, 2003) Çetin, A. Enis; Özaktaş, H.; Özaktaş, Haldun M.The problem of enhancing the resolution of wavefield or beam profile measurements obtained using low resolution sensors is addressed by solving the problem of interpolating signals from partial fractional Fourier transform information in several domains. The iterative interpolation algorithm employed is based on the method of projections onto convex sets (POCS).Item Open Access RT-SHPM imaging of permalloy microstructures and garnet films using new high performance INSB sensors(IEEE, 2002) Oral, Ahmet; Kaval, Murat; Dede, Münir; Sandhu, A.The room temperature scanning Hall probe microscopy (RT-SHPM) imaging of permalloy microstructures and garnet films was discussed. The high performance InSb Hall sensors were used for this purpose. It was shown that the InSb Hall probes were highly sensitive and low noise alternatives to GaAs sensors for RT-SHPM.Item Open Access Simultaneous extraction of geometry and surface properties of targets using simple infrared sensors(SPIE, 2004) Aytaç, T.; Barshan, B.We investigate the use of low-cost infrared (IR) sensors for the simultaneous extraction of geometry and surface properties of commonly encountered features or targets in indoor environments, such as planes, corners, and edges. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting target in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and recognition process. We propose the use of angular intensity scans and present an algorithm to process them to determine the geometry and the surface type of the target and estimate its position. The method is verified experimentally with planes, 90-deg corners, and 90-deg edges covered with aluminum, white cloth, and Styrofoam packaging material. An average correct classification rate of 80% of both geometry and surface over all target types is achieved and targets are localized within absolute range and azimuth errors of 1.5 cm and 1.1 deg, respectively. Taken separately, the geometry and surface type of targets can be correctly classified with rates of 99 and 81%, respectively, which shows that the geometrical properties of the targets are more distinctive than their surface properties, and surface determination is the limiting factor. The method demonstrated shows that simple IR sensors, when coupled with appropriate processing, can be used to extract substantially more information than that for which such devices are commonly employed. © 2004 Society of Photo-Optical Instrumentation Engineers.