Browsing by Subject "Image planes"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Connectivity-guided adaptive lifting transform for image like compression of meshes(IEEE, 2007-05) Köse, Kıvanç; Çetin, A. Enis; Güdükbay, Uğur; Onural, LeventWe propose a new connectivity-guided adaptive wavelet transform based mesh compression framework. The 3D mesh is first transformed to 2D images on a regular grid structure by performing orthogonal projections onto the image plane. Then, this image-like representation is wavelet transformed using a lifting structure employing an adaptive predictor that takes advantage of the connectivity information of mesh vertices. Then the wavelet domain data is encoded using "Set Partitioning In Hierarchical Trees" (SPIHT) method or JPEG2000. The SPIHT approach is progressive because the resolution of the reconstructed mesh can be changed by varying the length of the 1D data stream created by the algorithm. In JPEG2000 based approach, quantization of the coefficients determines the quality of the reconstruction. The results of the SPIHT based algorithm is observed to be superior to JPEG200 based mesh coder and MPEG-3DGC in rate-distortion.Item Open Access Joint estimation and optimum encoding of depth field for 3-D object-based video coding(IEEE, 1996-09) Alatan, A. Aydın; Onural, Levent3-D motion models can be used to remove temporal redundancy between image frames. For efficient encoding using 3-D motion information, apart from the 3-D motion parameters, a dense depth field must also be encoded to achieve 2-D motion compensation on the image plane. Inspiring from Rate-Distortion Theory, a novel method is proposed to optimally encode the dense depth fields of the moving objects in the scene. Using two intensity frames and 3-D motion parameters as inputs, an encoded depth field can be obtained by jointly minimizing a distortion criteria and a bit-rate measure. Since the method gives directly an encoded field as an output, it does not require an estimate of the field to be encoded. By efficiently encoding the depth field during the experiments, it is shown that the 3-D motion models can be used in object-based video compression algorithms.