Browsing by Subject "Image Structures"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Detection of heterogeneous structures using hierarchical segmentation(IEEE, 2011) Akçay, H. Gokhan; Aksoy, SelimWe present an unsupervised hierarchical segmentation algorithm for detecting complex heterogeneous image structures that are comprised of simpler homogeneous primitive objects. The first step segments primitive objects with uniform spectral content. Then, the co-occurrence information between neighboring regions is modeled and clustered. We assume that dense clusters of this co-occurrence space can be considered significant. Finally, the neighboring regions within these clusters are merged to obtain the next level in the segmentation hierarchy. The experiments show that the algorithm that iteratively clusters and merges region groups is able to segment heterogeneous structures in a hierarchical manner. © 2011 IEEE.Item Open Access Hierarchical segmentation of complex structures(IEEE, 2010) Akçay, H. Gökhan; Aksoy, Selim; Soille P.We present an unsupervised hierarchical segmentation algorithm for detection of complex heterogeneous image structures that are comprised of simpler homogeneous primitive objects. An initial segmentation step produces regions corresponding to primitive objects with uniform spectral content. Next, the transitions between neighboring regions are modeled and clustered. We assume that the clusters that are dense and large enough in this transition space can be considered as significant. Then, the neighboring regions belonging to the significant clusters are merged to obtain the next level in the hierarchy. The experiments show that the algorithm that iteratively clusters and merges region groups is able to segment high-level complex structures in a hierarchical manner. © 2010 IEEE.Item Open Access MPEG-7 uyumlu video veri tabanlari için önemli nesnelerin otomatik olarak bulunmasi(IEEE, 2008-04) Baştan, Muhammed; Güdükbay, Uğur; Ulusoy, ÖzgürBu çalışma, genel olarak nesneye dayalı endekslemeyi destekleyen, özel olarak MPEG-7 uyumlu veritabanları için, videolardan önemli nesnelerin otomatik olarak çıkarılmasını saglayabilecek bir yöntem sunmaktadır. Şimdiye kadar yapılan benzer çalışmalar genellikle resimler üzerinde yoğunlaşmış ve sadece ilk bakışta dikkati çeken alanları bulmaya çalışmıştır. Önerilen yöntem ise videolar üzerinde çalışmak için tasarlanmış olup sadece ilk bakışta dikkat çeken bölgelerin değil, videonun endekslenmesi için önemli sayılabilecek bölgelerin de bulunabilmesini amaçlamaktadır. Bunun için önce video kareleri bölütlere ayrılmakta, sonra her bölüt için yerel ve genel renk, biçim, doku ve hareket bilgileri hesaplanmakta, son olarak bu özellikler kullanılarak eğitilmiş bir destek vektor makinesi (SVM) kullanılarak bölgelerin önemli olup olmadığına karar verilmektedir. İlk deney sonuçları önerilen y öntemin başarılı olduğunu ve elde edilen nesnelerin öncekilere g öre anlamsal olarak daha iyi olduğunu göstermektedir. We describe a method to automatically extract video objects, which are important for object-based indexing of videos in an MPEG-7 compliant video database system. Most of the existing salient object detection approaches detect visually conspicuous image structures, while our method aims to find regions that may be important for indexing in a video database system. Our method works on a shot basis. We first segment each frame to obtain homogeneous regions in terms of color and texture. Then, we extract a set of local and global color, shape, texture and motion features for each region. Finally, the regions are classified as being salient or non-salient using SVMs trained on a few hundreds of example regions. Experimental results from news video segments show that the proposed method is more effective in extracting the important regions in terms of human visual perception. ©2008 IEEE.