Browsing by Subject "IR imaging"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Design and development of X-band GaN-based low-noise amplifiers(2022-12) Zafar, SalahuddinGallium nitride (GaN) high electron mobility transistor (HEMT) technology emerged as a preferable candidate for high-power applications. GaN HEMTs on silicon carbide (SiC) substrate provide the best combination of speed and power due to high power density, escalated saturated carrier velocity, high efficiency, enhanced electrical breakdown, and superior thermal conductivity. Over the years, GaN technology also started to take its place in low-noise applications due to built-in power handling capability at the receive end of transceivers for compact designs and high linearity. For GaN-based low-noise amplifiers (LNAs), improving the noise figure (NF) and getting it close to other competitive technologies is always challenging. More-over, further improvement in the robustness of GaN-based LNAs in terms of survivability and reverse recovery time (RRT) is needed. For this purpose, NAN-OTAM’s 0.15 µm GaN on SiC HEMT process is used to realize LNAs, one with survivability as high as 42 dBm and the other having NF as low as 1.2 dB. Survivability is investigated in terms of gain compression and forward gate current, while RRT is explored in detail with respect to the RC time constant of transistor and trap phenomenon. In the LNA design, the significance of inductive source degenerated HEMT, and the role of stability networks towards NF improvement are discussed in detail. Furthermore, thermal simulations and infrared (IR) thermographic measurements of the LNA monolithic microwave integrated circuit are correlated to unveil the maximum channel temperature buried inside the two-dimensional electron gas of HEMT.Item Open Access Unveiling Tmax inside GaN HEMT based X-band low-noise amplifier by correlating thermal simulations and IR thermographic measurements(IEEE, 2022-12-20) Zafar, Salahuddin; Durna, Yılmaz; Koçer, Hasan; Akoğlu, Büşra Çankaya; Aras, Yunus Erdem; Odabaşı, Oğuz; Bütün, Bayram; Özbay, EkmelThis paper presents a method to reveal the channel temperature profile of high electron mobility transistors (HEMTs) in a multi-stage monolithic microwave integrated circuit (MMIC). The device used for this study is a two-stage X-band low-noise amplifier fabricated using 0.15 m GaN-on-SiC technology with 4x50 m and 4x75 m HEMTs at the first and the second stage, respectively. The surface temperature measured through infrared (IR) thermography has a diffraction-limited resolution. Moreover, it is impossible to measure sub-surface Tmax residing inside the two-dimensional electron gas of HEMT using IR thermographic measurements. Finite element analysis (FEA) thermal simulations are performed in this study to acquire the surface and sub-surface temperature profiles of the whole MMIC. IR measurements and FEA simulations are integrated through a correlation-based method verifying the accuracy of the FEA-based temperature profiles. This method leads to accurately finding the hotspots in the MMIC, thus revealing the Tmax of both stages. The correlation method using two filters approach to match the measurements and simulated temperature profiles of all the stages finds its application in MMICs’ high-temperature operating lifetime reliability tests.