Browsing by Subject "Hyperdifferential operators"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Discrete linear canonical transform based on hyperdifferential operators(IEEE, 2019-05) Koç, Aykut; Bartan, Burak; Özaktaş, HaldunLinear canonical transforms (LCTs) are of importance in many areas of science and engineering with many applications. Therefore, a satisfactory discrete implementation is of considerable interest. Although there are methods that link the samples of the input signal to the samples of the linear canonical transformed output signal, no widely-accepted definition of the discrete LCT has been established. We introduce a new approach to defining the discrete linear canonical transform (DLCT) by employing operator theory. Operators are abstract entities that can have both continuous and discrete concrete manifestations. Generating the continuous and discrete manifestations of LCTs from the same abstract operator framework allows us to define the continuous and discrete transforms in a structurally analogous manner. By utilizing hyperdifferential operators, we obtain a DLCT matrix, which is totally compatible with the theory of the discrete Fourier transform (DFT) and its dual and circulant structure, which makes further analytical manipulations and progress possible. The proposed DLCT is to the continuous LCT, what the DFT is to the continuous Fourier transform. The DLCT of the signal is obtained simply by multiplying the vector holding the samples of the input signal by the DLCT matrix.Item Open Access Discrete scaling based on operator theory(Elsevier, 2020-11-04) Koç, Aykut; Bartan, B.; Özaktaş, Haldun MemduhSignal scaling is a fundamental operation of practical importance in which a signal is made wider or narrower along the coordinate direction(s). Scaling, also referred to as magnification or zooming, is complicated for signals of a discrete variable since it cannot be accomplished simply by moving the signal values to new coordinate points. Most practical approaches to discrete scaling involve interpolation. We propose a new approach based on hyperdifferential operator theory that does not involve conventional interpolation. This approach provides a self-consistent and pure definition of discrete scaling that is fully consistent with discrete Fourier transform theory. It can potentially be applied to other problems in signal theory and analysis such as transform designs. Apart from its theoretical elegance, it also provides a basis for numerical implementation.Item Open Access Operator theory-based computation of linear canonical transforms(Elsevier, 2021-08-12) Koç, Aykut; Özaktaş, Haldun M.Linear canonical transforms (LCTs) are extensively used in many areas of science and engineering with many applications, which requires a satisfactory discrete implementation. Recently, hyperdifferential operators have been proposed as a novel way of defining the discrete LCT (DLCT). Here we first focus on improving the accuracy of this approach by considering alternative discrete coordinate multiplication and differentiation operations. We also consider canonical decompositions of LCTs and compare them with the originally proposed Iwasawa decomposition. We show that accuracy of the approximation of the continuous LCT with the DLCT can be drastically improved. The advantage and elegance of this approach lie in the fact that it reduces the problem of defining sophisticated discrete transforms to merely defining discrete coordinate multiplication and differentiation operations, by reducing the transforms to these operations. As a result of systematic investigation of possible parameters and design choices, we achieve a DLCT that is both theoretically satisfying and highly accurate.Item Open Access Operator theory-based discrete fractional Fourier transform(Springer, 2019) Koç, AykutThe fractional Fourier transform is of importance in several areas of signal processing with many applications including optical signal processing. Deploying it in practical applications requires discrete implementations, and therefore defining a discrete fractional Fourier transform (DFRT) is of considerable interest. We propose an operator theory-based approach to defining the DFRT. By deploying hyperdifferential operators, a DFRT matrix can be defined compatible with the theory of the discrete Fourier transform. The proposed DFRT only uses the ordinary Fourier transform and the coordinate multiplication and differentiation operations. We also propose and compare several alternative discrete definitions of coordinate multiplication and differentiation operations, each of which leads to an alternative DFRT definition. Unitarity and approximation to the continuous transform properties are also investigated in detail. The proposed DFRT is highly accurate in approximating the continuous transform.