Browsing by Subject "Hydrolysis"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis(Royal Society of Chemistry, 2016) Gulseren, G.; Khalily, M. A.; Tekinay, A. B.; Güler, Mustafa O.Essential amino acids in catalytic sites of native enzymes are important in nature inspired catalyst designs. Active sites of enzymes contain the coordinated assembly of multiple amino acids, and catalytic action is generated by the dynamic interactions among multiple residues. However, catalysis studies are limited by the complex and dynamic structure of the enzyme; and it is difficult to exclusively attribute a given function to a specific residue. Minimalistic approaches involving artificial catalytic sites are promising for the investigation of the enzyme function in the absence of non-essential protein components, and self-assembling peptide nanostructures are especially advantageous in this context. Here we demonstrate the design and characterization of an enzyme-mimetic catalytic nanosystem presenting essential residues (Ser, His, Asp). The function of each residue and its combinations on the nanostructures in hydrolysis reaction was studied. The catalytic self-assembled nanostructures were used for efficient ester hydrolysis such as a model substrate (pNPA) and a natural substrate (acetylcholine) highlighting the key role of self-assembly in catalytic domain formation to test the efficiency of the de novo designed catalyst as a catalytic triad model.Item Open Access The effect of anions of transition metal salts on the structure of modified mesostructured silica films and monoliths(Elsevier, 2007) Demirörs, A. F.; Arslan, M.; Dag, Ö.The structure of the preformed LC mesophase of water:transition metal salt ([M(H2O)6]X2):acid (HX):oligo(ethylene oxide) (or Pluronics):tetramethylorthosilicate (TMOS) mixture during hydrolysis and partial polymerization of the silica source is maintained upon further polymerization and condensation of the silica species in the solid state. The liquid mixture in early stage of the silica polymerization could be casted or dip coated to a surface of a glass or silicon wafer to produce mesostructured silica monoliths and films, respectively. The silica species and ions (metal ions and anions) influence the structure of the LC mesophases (as a result, the structure of silica) and the hydrophilic and hydrophobic balance in the reaction media. The silica structure can be changed from hexagonal to cubic by increasing, for example, the nitrate salt concentration in the nitrate salt systems. A similar transformation takes place in the presence of very low perchlorate salt concentration. The salt concentration in the mesostructured silica can be increased up to 1.1/1.0 salt/SiO2 w/w ratio, in mesostructured silica materials by maintaining its lamella structure in P123 and cubic in the CnEOm systems. However, the materials obtained from the P123 systems undergo transformation from lamella to 2D hexagonal upon calcinations. The method developed in this work can be used to modify the internal surface of the pores with various transition metal ions and metal oxides that may find application in catalysis. © 2006 Elsevier Inc. All rights reserved.Item Open Access Fluorescent Si QD decoration onto a flexible polymeric electrospun nanofibrous mat for the colorimetric sensing of TNT(Royal Society of Chemistry, 2017) Arslan, O.; Aytac Z.; Uyar, TamerUV range light was used for the facile, effective and large-scale synthesis of visible light emitting, surface-protected silicon quantum dots (Si QDs) starting from an amine-functionalized alkoxy silane precursor. Within mild and easy hydrolysis/condensation environments, the use of an amine-functionalized precursor together with a reducing agent resulted in a bright visible green light that could be used for fluorescent analytical detection systems. Visible light emitting Si QDs were investigated and it was found that their emission character depends on the illumination time, hydrolysis/condensation conditions and pretreatments for the silane coupling agents. A Nylon 6,6 electrospun nanofibrous mat was selected as a substrate for decoration by the Si QDs in order to fabricate a flexible and free-standing polymeric nanofibrous mat posessing a visible light emitting character so that it could act as a visible colorimetric sensor. The visible light emitting Si QDs were decorated onto the Nylon 6,6 nanofibrous mats via covering the surfaces as a ‘nanodress’ by a simple impregnation/dip-coating and heat-curing methods. The analytical results revealed that the Si QDs decorated flexible polymeric nanofibrous mats could be utilized for colorimetric trinitrotoluene (TNT) detection in low concentrations.Item Open Access Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification(American Chemical Society, 2016) Arslan, O.; Aytac Z.; Uyar, TamerElectrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.Item Open Access Surface spectroscopic studies of Cs+, and Ba2+ sorption on chlorite-illite mixed clay(De Gruyter Oldenbourg, 2000) Shahwan, T.; Sayan, S.; Erten, H. N.; Black, L.; Hallam, K. R.; Allen, G. C.The sorption behavior of Cs+, and Ba2+ on natural clay was investigated using ToF-SIMS, XPS, and XRD. The natural clay was composed mainly of chlorite and illite in addition to quartz and calcite. Depth profiling up to 70 Å was performed at 10 Å steps utilizing ToF-SIMS to study the amount of sorbed Cs+ and Ba2+ as a function of depth in the clay matrix. The results suggest that Cs+ and Ba2+ ions were sorbed primarily by ion exchange coupled with hydrolytic sorption. According to ToF-SIMS and XPS results, the total sorbed amount of Ba2+ was larger than that of Cs+. Quantitative determination of the primary cations within the analyzed clay before and after sorption indicated that for Ba2+ sorption, Ca2+, Mg2+ and for Cs+ sorption Ca2+, K+ were the major exchanging ions. The XRD spectra of Ba-sorbed clay contained new peaks that were identified as BaCO3.Item Open Access Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water(Elsevier, 2017-12) Satilmis, B.; Budd, P. M.; Uyar, TamerIn this study, the Polymer of Intrinsic Microporosity (PIM-1) was systematically hydrolyzed in the presence of sodium hydroxide by varying the concentration of base, washing procedure and the time of the reaction. The chemical structure analyses confirmed that PIM-1 could be hydrolyzed by 65% up to 99% conversion depending on the synthesis procedure. The hydrolyzed PIM-1 samples have shown improved solubility which facilitates the fabrication of hydrolyzed PIM-1 ultrafine fibers by electrospinning technique. Extensive optimization studies were performed for the electrospinning of uniform and bead-free fibers from hydrolyzed PIM-1 with different degree of hydrolysis (65%, 86%, 94% and 99%). The electrospun hydrolysed PIM-1 fibrous samples have average fiber diameters (AFD) ranging from 0.58 ± 0.15 μm to 1.21 ± 0.15 μm, depending on the polymer concentration and applied electrospinning parameters. After electrospinning, self-standing hydrolyzed PIM-1 fibrous membranes were obtained which is useful as a filtering material for the adsorption of organic dyes from wastewater. Here, the capability of hydrolyzed PIM-1 electrospun fibrous membranes for the removal of dyes from aqueous solutions was investigated by using a batch adsorption process. The maximum adsorption capacity of fully hydrolyzed PIM-1 fibers was found 157 ± 16 mg g− 1 for Methylene Blue and 4 mg g− 1 for Congo red when the adsorption was conducted by 20 mg L− 1 dye solution without using any dilution. Moreover, maximum dye adsorption was also studied by using concentrated Methylene Blue solutions showing up to 272 mg g− 1 adsorption maximum. In addition, the self-standing fibrous hydrolyzed PIM-1 membrane was employed to separate Methylene Blue from an aqueous system by filtration without the necessity of additional driving force. The results indicate that hydrolyzed PIM-1 electrospun nanofibrous membranes can be a promising filtering material for wastewater treatment