BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Hydrogen generation"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane
    (American Chemical Society, 2018) Khalily, Mohammad Aref; Yurderi, M.; Haider, Ali; Bulut, A.; Patil, Bhushan; Zahmakiran, M.; Uyar, Tamer
    We report the fabrication of a novel and highly active nanocatalyst system comprising electrospun carbon nanofiber (CNF)-supported ruthenium nanoparticles (NPs) (Ru@CNF), which can reproducibly be prepared by the ozone-assisted atomic layer deposition (ALD) of Ru NPs on electrospun CNFs. Polyacrylonitrile (PAN) was electropsun into bead-free one-dimensional (1D) nanofibers by electrospinning. The electrospun PAN nanofibers were converted into well-defined 1D CNFs by a two-step carbonization process. We took advantage of an ozone-assisted ALD technique to uniformly decorate the CNF support by highly monodisperse Ru NPs of 3.4 ± 0.4 nm size. The Ru@CNF nanocatalyst system catalyzes the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage, with a record turnover frequency of 563 mol H2/mol Ru × min and an excellent conversion (>99%) under air at room temperature with the activation energy (Ea) of 30.1 kJ/mol. Moreover, Ru@CNF demonstrated remarkable reusability performance and conserved 72% of its inherent catalytic activity even at the fifth recycle.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Subwavelength densely packed disordered semiconductor metasurface units for photoelectrochemical hydrogen generation
    (American Chemical Society, 2022-03-10) Ulusoy Ghobadi, T. Gamze; Ghobadi, Amir; Odabaşı, Oğuz; Karadaş, Ferdi; Özbay, Ekmel
    For most semiconductors, especially the visible-light-absorbing ones, the carrier diffusion length is significantly shorter than the light penetration depth, limiting their photoactivities. This limitation could be mitigated through the use of subwavelength semiconductor-based metasurfaces and metamaterials. In this paper, a large-scale compatible metasurface photocathode, made of densely packed disordered p-type chromium oxide (CrOX), is developed to be utilized in photoelectrochemical (PEC) hydrogen generation. For this purpose, first, tightly packed random Cr nanorods are fabricated using an oblique angle deposition technique. Afterward, an annealing step is applied to the sample to transform these metallic units into a semiconducting p-type CrOX-based metasurface. Based on the experimental characterization results and numerical simulations, the proposed design can provide strong light-matter interactions in an ultra-broadband-wavelength range, mainly due to its multidimensional random geometry and ultrasmall gap sizes. Finally, to substantiate the activity of the CrOXnanorods, a core-crown geometry is developed where the NiOXcapping layer catalyzes the hydrogen evolution reaction (HER). The proposed heterostructure metasurface absorber can impose photocurrent values as large as 50 μA cm-2with a photocurrent spectral response extended up to 500 nm. Moreover, the electrode shows outstanding operation under light irradiation for 9 hours. This work demonstrates a simple, scalable design strategy to fabricate low-cost and stable photocathodes for PEC hydrogen evolution. © 2022 American Chemical Society. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback